PL EN
PRACA ORYGINALNA
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel:
Podstawę prawidłowego funkcjonowania organizmu człowieka stanowi pożywienie. Nieodpowiednia jakość konsumowanych produktów spożywczych może mieć negatywny wpływ na zdrowie człowieka. Niebezpiecznym i szkodliwym dla zdrowia związkiem chemicznym zawartym w produktach spożywczych jest akryloamid (AA). Celem badania była identyfikacja i analiza danych ze źródeł literaturowych na temat zagrożenia zdrowia konsumentów związanego ze spożywaniem wysokoprzetworzonej żywności zawierającej akryloamid oraz oszacowanie wielkości tego ryzyka zdrowotnego

Materiał i metody:
Analizę wielkości zagrożenia zdrowia konsumentów związanego z narażeniem na AA obecny w żywności przeprowadzono, dokonując przeglądu dostępnych danych literaturowych, opublikowanych w ciągu 11 lat (od 2011do 2021 roku). Z Głównego Urzędu Statystycznego pozyskano dane dotyczące wielkości spożycia poszczególnych artykułów spożywczych przez przeciętnego mieszkańca Polski. W celu oceny ryzyka zdrowotnego konsumentów, wynikającego ze spożywania poszczególnych produktów spożywczych zawierających AA, obliczono narażenie dla osoby dorosłej. Oszacowano wielkość ryzyka zdrowotnego zgodnie z wytycznymi US EPA (U.S. Environmental Protection Agency)

Wyniki:
Analiza wielkości ryzyka zdrowotnego u przeciętnego Polaka przeprowadzona na podstawie trzech scenariuszy, które zakładały konsumpcję wybranych produktów spożywczych zawierających minimalne, średnie i wysokie ilości akryloamidu, nie wykazały istotnego narażenia w żadnej z grup.

Wnioski:
Oszacowana wielkość ryzyka zdrowotnego wynikającego z narażenia na akryloamid zawarty w żywności nie wykazała istotnego narażenia, jednak ponieważ człowiek spożywa żywność zawierającą AA przez całe życie, zawartość tego toksycznego związku w produktach spożywczych ma znaczenie.

Introduction and objective:
Food is a basis for proper functioning of the human body. Inadequate quality of consumed food products may have a negative impact on mhuman health. Acrylamide (AA) is a dangerous and harmful chemical compound contained in food products. The aim of the study was to identify and analyze data from literature concerning the risk to consumer health associated with the consumption of highly processed foods containing acrylamide, and to estimate the size of this risk.

Material and methods:
Analysis of the size of consumer health risk related to exposure to AA in food was performed by reviewing the available literature data published over 11 years (from 2011–2021). Data on the consumption of particular food products by an average Pole was obtained from the Central Statistical Office. Adult exposure was calculated to assess the health risks to consumers from consuming individual foods containing AA. The health risk was estimated in accordance with US EPA guidelines.

Results:
The analysis of the size of health risk to an average Pole performed based on three scenarios that assumed the consumption of selected food products containing minimum, medium and high amounts of acrylamide did not show any significant exposure in any groups of products

Conclusions:
The estimated health risk resulting from exposure to acrylamide contained in food did not show any significant exposure, however, considering that a person consumes food containing AA throughout the whole life the content of this toxic compound in food products is important.
Piekut A, Baranowska R, Suchanek M, Spychała A. Zanieczyszczenie żywności akryloamidem w aspekcie zagrożenia zdrowia konsumentów. Med Og Nauk Zdr. 2022; 28(2): 196–201. doi: 10.26444/monz/146552
REFERENCJE (47)
1.
Garcia N, Osburn I, Jay-Russell T. One health for food safety, food security, and sustainable food production. Frontiers in Sustainable Food Systems. 2020; 4: 1. doi: 10.3389/fsufs.2020.00001.
 
2.
Fung F, Wang HS, Menon S. Food safety in the 21st century. Biomedical Journal. 2018; 41(2): 88–95. doi: https://doi.org/10.1016/j.bj.2....
 
3.
Rifai L, Saleh FA. A review on acrylamide in food: occurrence, toxicity, and mitigation strategies. International Journal of Toxicology. 2020; 39(2): 93–102. doi: https://doi.org/10.1177/109158....
 
4.
Mogol BA, Gökmen V. Thermal process contaminants: acrylamide, chloropropanols and furan. Current Opinion in Food Science. 2016; 7: 86–92. doi: 10.1016/j.cofs.2016.01.005.
 
5.
Acrylamide. [In:] Evaluation of certain food contaminants. Sixty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, Genewa. 2006; 22. WHO Technical Report Series — 930. ISBN 92-4-120930-5. URL: https://apps.who.int/iris bits..._ eng.pdf;jsessionid=ED32E1B8095F48CACF6EAE7D89DB6EA7?sequence=1 (access: 23.09.2021).
 
6.
International Agency for Research on Cancer. 1994. Some industrial chemicals. IARC Monogr Eval Carcinog Risks Hum 60: 389–433. URL: https://www.ec.gc.ca/ese-ees/A.... (access: 23.09.2021).
 
7.
European Food Safety Authority. Scientific Opinion on acrylamide in food. Parma, Italy. 2015. EFSA Journal 2015; 13(6): 4104. URL: https://efsa.onlinelibrary.wil.... (access: 23.09.2021).
 
8.
Virk-Baker MK, Nagy TR, Barnes S, Groopman J. Dietary acrylamide and human cancer: a systematic review of literature. Nutr. Cancer. 2014; 66(5): 774–790. doi: 10.1080/01635581.2014.916323.
 
9.
Liu R, Zha L, Sobue T, Kitamura T, Ishihara J, Kotemori A, Tsugane S. Dietary Acrylamide Intake and Risk of Lung Cancer: The Japan Public Health Center Based Prospective Study. Nutrients. 2020; 12(8): 2417. doi: 10.3390/nu12082417.
 
10.
Zalecenie Komisji Europejskiej z dnia 3 maja 2007 r. w sprawie moni- torowania poziomów akryloamidu w żywności (2007/331/EC). Dz.U. L 123 z 12.5.2007.
 
11.
Zalecenie Komisji Europejskiej z dnia 2 czerwca 2010 r. w sprawie monitorowania poziomów akryloamidu w żywności (2019/1888/EU). DzUUEL 2019.290.31 z 7.11.2019.
 
12.
Rozporządzenie Komisji (UE) 2017/2158 z dnia 20 listopada 2017 r. ustanawiające środki łagodzące i poziomy odniesienia służące ograniczeniu obecności akryloamidu w żywności. URL:https://eurlex.europa.eu/legal.... [access: 21.05.2021].
 
13.
Główny Urząd Statystyczny (GUS). Bank danych lokalnych. Przeciętne miesięczne spożycie wybranych artykułów żywnościowych na 1 osobę. URL: https://bdl.stat.gov.pl/BDL/da.... [access: 24.06.2021].
 
14.
US EPA: Acrylamide; CASRN 79-06-1. URL: https://cfpub.epa.gov/ncea/iri... [access: 09.05.2021].
 
15.
Norouzi E, Kamankesh M, Mohammadi A, Attaran A. Acrylamide in bread samples: Determining using ultrasonic-assisted extraction and microextraction method followed by gas chromatography-mass spectrometry. Journal of cereal science. 2018; 79: 1–5. doi: https://doi. org/10.1016/j.jcs.2017.09.011.
 
16.
Eslamizad S, Kobarfard F, Tsitsimpikou C, Tsatsakis A, Tabib K, Yaz- danpanah H. Health risk assessment of acrylamide in bread in Iran using LC-MS/MS. Food and chemical toxicology. 2019; 126: 162–168. doi: https://doi.org/10.1016/j.fct.....
 
17.
Mojska H, Gielecińska I, Ołtarzewski M. Akrylamid w żywności – ocena narażenia populacji polskiej. Bromat Chem Toksykol. 2012; XLV(3): 1071–1074.
 
18.
Kafouris D, Stavroulakis G, Christofidou M, Iakovou X, Christou E, Paikousis L, Yiannopoulos S. Determination of acrylamide in food using a UPLC–MS/MS method: Results of the official control and die- tary exposure assessment in Cyprus. Food Additives & Contaminants: Part A. 2018; 35(10): 1928–1939. doi: 10.1080/19440049.2018.1508893.
 
19.
Pugajeva I, Zumbure L, Melngaile A, et al. Determination of acrylami- de levels in selected foods in Latvia and assessment of the population intake. FOODBALT. 2014. URL: http://llufb.llu.lv/conference..._ Proceedings_2014–111–116.pdf. [access: 20. 06. 2019].
 
20.
Tajner-Czopek A, Rytel E, Nemś A. Zawartość akrylamidu w wybranych produktach ziemniaczanych w zależności od użytego surowca. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin. 2012; 266: 163–171.
 
21.
Pacetti D, Gil E, Frega NG, Álvarez L, Dueñas P, Garzón A, Lucci P. Ac- rylamide levels in selected Colombian foods. Food Additives & Contaminants: Part B. 2015; 8(2): 99–105. DOI: 10.1080/19393210.2014.995236.
 
22.
Molina-Garcia L, Santos CSP, Melo A, Fernandes JO, Cunha SC, Casal S. Acrylamide in chips and French fries: a novel and simple method using xanthydrol for its GC-MS determination. Food Analytical Methods. 2015; 8(6): 1436–1445. doi: 10.1007/s12161-014-0014-5.
 
23.
Pedreschi F, Mariotti S, Granby K, Risum J. Acrylamide reduction in potato chips by using commercial asparaginase in combination with conventional blanching. LWT-food Science and Technology. 2011; 44(6): 1473–1476. DOI: https://doi.org/10.1016/j.lwt.....
 
24.
Mesias M, Delgado-Andrade C, Holgado F, Morales FJ. Acrylamide content in French fries prepared in food service establishments. LWT. 2019; 100: 83–91. DOI: https://doi.org/10.1016/j.lwt.....
 
25.
Tajner-Czopek A, Rytel E, Kita A. Wpływ parametrów obróbki ter- micznej na zawartość AA w wybranych przetworach ziemniaczanych. Bromat Chem Toksykol. 2012; XLV(3): 320–325.
 
26.
Sanny M, Jinap S, Bakker EJ, Van Boekel MAJS, Luning PA. Possible causes of variation in acrylamide concentration in French fries prepared in food service establishments: An observational study. Food Chem. 2012; 132(1): 134–143. doi: 10.1016/j.foodchem.2011.10.044.
 
27.
Mesias M, Delgado-Andrade C, Holgado F, Morales FJ. Acrylamide content in French fries prepared in households: A pilot study in Spanish homes. Food Chem. 2018; 260: 44–52. doi: 10.1016/j.foodchem.2018.03.140.
 
28.
Food survey information sheet. A rolling programme of surveys on process contaminants in UK retail foods. Report covering sampling of acrylamide & furans 2016. URL: https://www.food.gov.uk/sites/... document/fs102075fsis2016. pdf. [access: 20. 06. 2019].
 
29.
Schouten MA, Tappi S, Romani S. Acrylamide in coffee: formation and possible mitigation strategies–a review. Critical reviews in food science and nutrition. 2018; 60(22): 3807–3821. doi: https://doi.org/10.1080/1 0408398.2019.1708264.
 
30.
Mojska H, Gielecinska I. Studies of acrylamide level in coffee and coffee substitutes: influence of raw material and manufacturing conditions. Roczniki Państwowego Zakładu Higieny. 2013; 64(3): 173–181.
 
31.
Anese M. Acrylamide in coffee and coffee substitutes. Acrylamide in food: analysis, content and potential health effects. Acrylamide in Food. 2016; 181–195. doi:10.1016/B978-0-12-802832-2.00009-7.
 
32.
Krishnakumar T. Acrylamide in Food Products: A Review. Journal of Food J Processing & Technology. 2014; 5: 7–14. doi: 10.4172/2157- 7110.1000344.
 
33.
Kowalczyk S. Bezpieczeństwo i jakość żywności. 1st ed. Warszawa: PWN; 2016. p. 9.
 
34.
Ustawy z dnia 25 sierpnia 2006 roku, w sprawie bezpieczeństwa żywności i żywienia (DzU 2006 nr 171 poz. 1225).
 
35.
Zhao Y, Wang L, Xue H, Wang H, Wang Y. Fast food consumption and its associations with obesity and hypertension among children: results from the baseline data of the Childhood Obesity Study in China Megacities. BMC Public Health. 2017; 17(1), 1–10. doi: 10.1186/s12889-017-4952-x.
 
36.
Kolarzyk E. Antyodżywcze i antyzdrowotne aspekty żywienia czło- wieka. Wydawnictwo Uniwersytetu Jagiellońskiego. 2016. ISBN: 978-83-233-3966-3.
 
37.
Timmermann CAG, Mølck SS, Kadawathagedara M, Bjerregaard AA, Törnqvist M, Brantsaeter AL, Pedersen M. A Review of Dietary Intake of Acrylamide in Humans. Toxics. 2021; 9(7): 155. doi: https://doi. org/10.3390/toxics9070155.
 
38.
Adani G, Filippini T, Wise LA, Halldorsson TI, Blaha L, Vinceti M. Die- tary intake of acrylamide and risk of breast, endometrial, and ovarian cancers: a systematic review and dose–response meta-analysis. Cancer Epidemiology and Prevention Biomarkers. 2020; 29(6): 1095–1106. doi: 10.1158/1055-9965.EPI-19-1628.
 
39.
European Commission. Scientific Committee On Food. Opinion of the scientific committee on food on new findings regarding the presence of acrylamide in food. Belgium 2002. URL:https://ec.europa.eu/food/site.... [access: 06.05.2021].
 
40.
Pelucchi C, Bosetti C, Galeone C, La Vecchia C. Dietary acrylamide and cancer risk: an updated meta-analysis. Int J Cancer. 2015; 136(12): 2912–2922. doi: 10.1002/ijc.29339.
 
41.
Kowalska M, Żbikowska A, Onacik-Gür S, Kowalska D. Acrylamide in food products–eating habits and consumer awareness among Medical School students. Ann Agric Environ Med. 2017; 24(4): 570–574. doi: 10.5604/12321966.1232764.
 
42.
Maan AA, Anjum MA, Khan MKI, Nazir A, Saeed F, Afzaal M, Aadil RM. Acrylamide formation and different mitigation strategies during food processing–a review. Food Reviews International. 2020: 1–18. https://doi.org/10.1080/875591....
 
43.
Tarko T, Duda-Chodak A, Witczak M. Żywność a bezpieczeństwo zdrowotne. XI Konferencja Naukowa z cyklu „Żywność XXI wieku”Kraków, 18–19 września 2014 r.
 
44.
Mojska H, Gielecińska I. Trendy zmian zawartości akryloamidu w produktach ziemniaczanych w Polsce w latach 2004–2016. Żywność. Nauka. Technologia. Jakość. 2018; 25(2): 93–107. doi: 10.15193/ZNTJ/2018/115/236.
 
45.
EFSA Panel On Contaminants In The Food Chain (Contam). Scientific opinion on acrylamide in food. Efsa Journal, 2015; 13(6): 4104. doi: https://doi.org/10.2903/j.efsa....
 
46.
Pedreschi F, Mariotti MS, Granby K. Current issues in dietary acrylamide: formation, mitigation and risk assessment. J Sci Food Agric. 2014; 94: 9–20. doi: 10.1002/jsfa.6349.
 
47.
Atsushi K, Satoko G, Akira Y, et al. Elimination of Acrylamide by Mode- rate Heat Treatment below 120°C with Lysine and Cysteine. Food Science and Technology Research. 2014; 20: 979–985. doi:10.3136/fstr.20.979.
 
eISSN:2084-4905
ISSN:2083-4543
Journals System - logo
Scroll to top