REVIEW PAPER
Effect of nutrition on cognitive functions
More details
Hide details
1
Uniwersytet Opolski, Collegium Medicum, Polska
Med Og Nauk Zdr. 2021;27(4):365-371
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Cognitive functions are the precondition of proper functioning of an organism in terms of reception and processing of stimuli coming from the environment. Proper nutrition is a basis of prevention of cognitive impairment. The aim of the presented study was to describe the effect of nutrition on cognitive functions, and the related cognitive disorders.
Review methods:
Scientific publications found in databases, e.g. PubMed and scientific journals were analyzed, including meta-analyses, randomized trials, and systematic reviews, concerning the scope of medical and nutritional problems, excluding case reports.
Abbreviated description of the state of knowledge:
Signs and symptoms of cognitive disorder include decrease in productivity and attention deficit. Most often these symptoms are transient and disappear with cessation of the underlying cause, but they may also be the sign of development of a neurodegenerative disease. Due to the fact that the development of cognitive disorders is multicausal, it is impossible to achieve its entire elimination or inhibition. The factors which we can modify are: body weight, nutrition, gut microbiota quality and dietary supplements. A suitable diet rich in vitamin B, antioxidants, probiotics and unsaturated fatty acids may temporarily improve cognitive functions and prevent neurodegenerative diseases which today remain incurable. Using probiotic supplements can be taken into consideration as a promising complementary therapy; however, it requires further research.
Summary:
Complex care of balanced diet and health promoting life mode is the key to maintaining cognitive functions. The efficiency in prevention of dementia is particularly high before the occurrence of the initial symptoms of the disease. Proper diet may inhibit the progress of neurodegenerative diseases; however, it has no effect on their regression
REFERENCES (78)
1.
Żmijewska A. Psychologia, zeszyt naukowy nr 2. Wyższa Szkoła EkonomicznoHumanistyczna w Skierniewicach; 2011. p. 10–21. ISSN – 2 0 8 2 – 818 7.
2.
Magierski R, AntczakDomagała K, Sobów T. Dieta jako czynnik protekcyjny otępienia. Aktualn Neurol 2014; 14(3): 167–174. doi: 10.15557/AN.2014.0019.
http://neurologia.com.pl/index... (access: 28.02.2021 r.).
3.
Locke A, Schneiderhan J, Zick SM. Diets for Health: Goals and Guidelines. Am Fam Physician. 2018 Jun 1; 97(11): 721–728.
4.
Gabryelewicz T. Łagodne zaburzenia poznawcze. Postępy Nauk Medycznych. 2011; 24(8).
5.
HauszPiskorz B, Buczkowski K. Diagnostyka i leczenie choroby Alzheimera w warunkach praktyki lekarza rodzinnego. Forum Medycyny Rodzinnej 2013; 7(4): 198–207.
6.
Departament Analiz i Strategii. Cukier, otyłość – konsekwencje. Narodowy Fundusz Zdrowia; 2019.
8.
Łopuszańska U, SkórzyńskaDziduszko K, Prendecka M, et al. Nadwaga i otyłość a zaburzenia funkcji poznawczych w grupie osób chorujących psychicznie. Psychiatr Pol. 2016; 50(2): 393–406.
http://dx.doi.org/10.12740/PP/....
9.
Martin A, Booth JN, Laird Y, et al. Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight. Cochrane Database Syst Rev. 2018 Mar 2; 3(3): CD009728.
https://doi.org/10.1002/146518....
10.
Anderson YC, Kirkpatrick K, Dolan GMS, et al. Do changes in weight status affect cognitive function in children and adolescents with obesity? A secondary analysis of a clinical trial. BMJ Open. 2019 Feb 19; 9(2): e021586.
http://dx.doi.org/10.1136/bmjo....
12.
Gibson GE, Hirsch JA, Fonzetti P, et al. Vitamin B1 (thiamine) and dementia. Ann NY Acad Sci. 2016 Mar; 1367(1): 21–30.
https://doi.org /10.1111/nyas.13031.
13.
Jarosz M, Rychlik E, Stoś K, et al. Normy żywienia dla populacji Polski i ich zastosowanie. Narodowy Instytut Zdrowia Publicznego; 2020. p. 197–239.
14.
Gasperi V, Sibilano M, Savini I, et al. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci. 2019; 20(4): 974.
https://doi.org/10.3390/ijms20....
15.
An, Y, Feng L, Zhang X, et al. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redoxrelated genes NUDT15 and TXNRD1. Clin Epigenet. 2019; 11(139).
https://doi.org/10.1186/s13148....
16.
McNulty H, Rollins M, Cassidy T, et al. Effect of continued folic acid supplementation beyond the first trimester of pregnancy on cognitive performance in the child: a followup study from a randomized controlled trial (FASSTT Offspring Trial). BMC Med. 2019; 17(196).
https://doi.org/10.1186/s12916....
17.
Cecchetti L, Lettieri G, Handjaras G, et al. Brain Hemodynamic Intermediate Phenotype Links Vitamin B12 to Cognitive Profile of Healthy and Mild Cognitive Impaired Subjects. Neural Plasticity. 2019; Article ID 6874805.
https://doi.org/10.1155/2019/6....
18.
Ford TC, Downey LA, Simpson T, et al. The Effect of a HighDose Vitamin B Multivitamin Supplement on the Relationship between Brain Metabolism and Blood Biomarkers of Oxidative Stress: A Randomized Control Trial. Nutrients. 2018; 10(12): 1860.
https://doi.org/10.3390/nu1012....
19.
McCleery J, Abraham RP, Denton DA, et al. Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst Rev. 2018 Nov 1; 11(11): CD011905.
https://doi.org/10.1002/146518....
20.
Sharma M, Tiwari M, Tiwari RK. Hyperhomocysteinemia: Impact on Neurodegenerative Diseases. Basic Clin Pharmacol Toxicol. 2015 Nov; 117(5): 287–96. ht t ps://doi.org /10.1111/ bcpt.12424.
21.
Dangour A, Allen E, Clarke R, et al. Effects of vitamin B12 supplementation on neurologic and cognitive function in older people: a randomized controlled trial. The American Journal of Clinical Nutrition. 2015; 102(3): 639–647.
https://doi.org/10.3945/ajcn.1....
22.
Rutjes AW, Denton DA, Di Nisio M, et al. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst Rev. 2018 Dec 17; 12(12): CD011906.
https://doi.org/10.1002/146518....
24.
Blusztajn JK, Slack BE, Mellott TJ. Neuroprotective Actions of Dietary Choline. Nutrients. 2017; 9(8): 815. Published 2017 Jul 28.
https://doi.org/10.3390/nu9080....
25.
Caudill MA, Strupp BJ, Muscalu L, et al. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, doubleblind, controlled feeding study. FASEB J. 2018; 32(4): 2172–2180.
https://doi.org/10.1096/fj.201... R.
26.
Derbyshire E, Obeid R. Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients. 2020; 12(6): 1731.
https://doi.org/10.3390/nu1206....
27.
Majewska M, Czeczot H. Flawonoidy w profilaktyce i terapii. Farm Pol. 2009; 65(5): 369–377.
28.
Bowtell JL, AbooBakkar Z, Conway ME, et al. Enhanced taskrelated brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab. 2017 Jul; 42(7): 773–779.
https://doi.org/10.1139/apnm2....
29.
McNamara RK, Kalt W, Shidler MD, et al. Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging. 2018; 64: 147–156.
https://doi.org/10.1016/j.neur....
30.
Boespflug EL, Eliassen JC, Dudley JA, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci. 2018 May; 21(4): 297–305.
https://doi.org/10.1080/102841....
31.
Miller K, Feucht W, Schmid M. Bioactive Compounds of Strawberry and Blueberry and Their Potential Health Effects Based on Human Intervention Studies: A Brief Overview. Nutrients. 2019 Jul 2; 11(7): 1510.
https://doi.org/10.3390/nu1107....
32.
Whyte AR, Cheng N, Butler LT, et al. FlavonoidRich Mixed Berries Maintain and Improve Cognitive Function Over a 6 h Period in Young Healthy Adults. Nutrients. 2019; 11(11): 2685.
https://doi.org/10.3390/nu1111....
33.
Barfoot KL, May G, Lamport DJ, et al. The effects of acute wild blueberry supplementation on the cognition of 7–10yearold schoolchildren. Eur J Nutr. 2019 Oct; 58(7): 2911–2920.
https://doi.org/10.1007/s00394....
34.
Khalid S, Barfoot KL, May G, et al. Effects of Acute Blueberry Flavonoids on Mood in Children and Young Adults. Nutrients. 2017; 9(2): 158.
https://doi.org/10.3390/nu9020....
35.
Traupe I, Giacalone M, Agrimi J, et al. Postoperative cognitive dysfunction and shortterm neuroprotection from blueberries: a pilot study. Minerva Anestesiol. 2018 Dec; 84(12): 1352–1360. doi: 10.23736/S03759393.18.123339.
36.
Nilsson A, Salo I, Plaza M, et al. Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; A randomized crossover study in healthy older adults. PLoS One. 2017 Nov 15; 12(11): e0188173.
https://doi.org/10.1371/journa l.pone.0188173.
37.
Zdrojewicz Z, Grześkowiak K, Łukasiewicz M. Wpływ spożycia czekolady na organizm człowieka. Medycyna Rodzinna. 2017 Marzec; 273–243.
http://doi.org/10.25121/MR.201....
38.
Mastroiacovo D, KwikUribe C, Grassi D, et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) Studya randomized controlled trial. Am J Clin Nutr. 2015 Mar; 101(3): 538–48.
https://doi.org/10.3945/ajcn.1....
39.
Sumiyoshi E, Matsuzaki K, Sugimoto N, et al. SubChronic Consumption of Dark Chocolate Enhances Cognitive Function and Releases Nerve Growth Factors: A ParallelGroup Randomized Trial. Nutrients. 2019 Nov 16; 11(11): 2800.
https://doi.org/10.3390/nu1111....
40.
Pelczyńska M, Bognański P. Prozdrowotne właściwości kawy. Forum Zaburzeń Metabolicznych 2019; 10(3): 112–120.
41.
Driscoll I, Shumaker SA, Snively BM, et al. Relationships Between Caffeine Intake and Risk for Probable Dementia or Global Cognitive Impairment: The Women's Health Initiative Memory Study. J Gerontol A Biol Sci Med Sci. 2016 Dec; 71(12): 1596–1602.
https://doi.org/10.1093/gerona....
42.
McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine's effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016 Dec; 71: 294–312.
https://doi.org/10.1016/j.neub....
43.
HaskellRamsay CF, Jackson PA, Forster JS, et al. The Acute Effects of Caffeinated Black Coffee on Cognition and Mood in Healthy Young and Older Adults. Nutrients. 2018 Sep 30; 10(10): 1386.
https://doi.org/10.3390/nu1010....
44.
McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine›s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016 Dec; 71: 294–312.
https://doi.org/10.1016/j.neub....
45.
Christensen ZP, Freedman EG, Foxe JJ. Caffeine exposure in utero is associated with structural brain alterations and deleterious neurocognitive outcomes in 9–10 year old children. Neuropharmacology. 2021 Jan 30; 186: 108479.
https://doi.org/10.1016/j.neur....
46.
Materac E, Marczyński Z, Bodek KH. Rola kwasów tłuszczowych omega3 i omega6 w organizmie człowieka. Bromat Chem Toksykol. 2013; 46(2): 225–233.
47.
Shulkin M, Pimpin L, Bellinger D, et al. n3 Fatty Acid Supplementation in Mothers, Preterm Infants, and Term Infants and Childhood Psychomotor and Visual Development: A Systematic Review and MetaAnalysis. J Nutr. 2018 Mar 1; 148(3): 409–418.
https://doi.org/10.1093/jn/nxx....
48.
Handeland K, Øyen J, Skotheim S, et al. Fatty fish intake and attention performance in 14–15 year old adolescents: FINSTEENS – a randomized controlled trial. Nutr J. 2017 Oct 2; 16(1): 64.
https://doi.org/10.1186/s12937....
49.
Stavrinou PS, Andreou E, Aphamis G, et al. The Effects of a 6Month High Dose Omega3 and Omega6 Polyunsaturated Fatty Acids and Antioxidant Vitamins Supplementation on Cognitive Function and Functional Capacity in Older Adults with Mild Cognitive Impairment. Nutrients. 2020; 12(2): 325.
https://doi.org/10.3390/nu1202....
50.
Phillips MA, Childs CE, Calder PC, et al. No Effect of Omega3 Fatty Acid Supplementation on Cognition and Mood in Individuals with Cognitive Impairment and Probable Alzheimer's Disease: A Randomised Controlled Trial. Int J Mol Sci. 2015; 16(10): 24600–24613.
https://doi.org/10.3390/ijms16....
51.
Shinto L, Quinn J, Montine T, et al. A randomized placebocontrolled pilot trial of omega3 fatty acids and alpha lipoic acid in Alzheimer's disease J Alzheimers Dis. 2014; 38(1): 111–120. doi: 10.3233/JAD130722.
52.
La Rosa F, Clerici M, Ratto D, et al. The GutBrain Axis in Alzheimer's Disease and Omega3. A Critical Overview of Clinical Trials. Nutrients. 2018 Sep; 10(9), 1267.
https://doi.org/10.3390/nu1009....
53.
Barnard ND, Bunner AE, Agarwal U. Saturated and trans fats and dementia: a systematic review. Neurobiol Aging. 2014 Sep; 35 Suppl 2: S65–73.
https://doi.org/10.1016/j.neur....
54.
Cichosz G, Czeczot H. Kwasy tłuszczowe izomerii trans w diecie człowieka. Bromat Chem Toksykol. 2012; 45(2): 181–190.
55.
SkoniecznaŻydecka K, Łoniewki I, Maciejewska D, et al. Mikrobiota jelitowa i składniki pokarmowe jako determinanty funkcji układu nerowego. Aktualn Neurol. 2017; 17(4): 181–188.
56.
Karwowska Z, Majchrzak K. Wpływ błonnika na zróżnicowanie mikroflory jelitowej. Bromat Chem Toksykol. 2015; 48(4): 701–709.
57.
Pushpanathan P, Mathew GS, Selvarajan S, Seshadri KG, Srikanth P. Gut microbiota and its mysteries. Indian J Med Microbiol. 2019 AprJun; 37(2): 268–277.
https://doi.org/10.4103/ijmm.I....
58.
Rudzki L, Frank M, Szulc A, et al. Od jelit do depresji – rola zaburzeń ciągłości bariery jelitowej i następcza aktywacja układu immunologicznego w zapalnej hipotezie depresji. Neuropsychiatria i Neuropsychologia. 2012; 7(2).
59.
KarakułaJuchnowicz H, Pankowicz H, Juchnowicz D, et al. Psychobiotyki – nowe możliwości terapii zaburzeń afektywnych? Farmakoterapia w Psychiatrii i Neurologii. 2015; 31(3–4): 229–242.
60.
SkoniecznaŻydecka K, Łoniewski I, Marlicz W, et al. Mikrobiota jelitowa jako potencjalna przyczyna zaburzeń funkcjonowania emocjonalnego człowieka. Med Dośw Mikrobiol. 2017; 69: 163–176.
61.
Bagga D, Reichert JL, Koschutnig K, et al. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes. 2018; 9(6): 486 –496.
https://doi.org/10.1080/194909....
62.
Steenbergen L, Sellaro R, van Hemert S, et al. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. 2015 Aug; 48: 258–64.
https://doi.org/10.1016/j.bbi.....
63.
Ton AMM, Campagnaro BP, Alves GA, et al. Oxidative Stress and Dementia in Alzheimer's Patients: Effects of Synbiotic Supplementation. Oxid Med Cell Longev. 2020 Jan 13; 2020: 2638703.
https://doi.org/10.1155/2020/2....
64.
Den H, Dong X, Chen M, et al. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer's disease or mild cognitive impairment – a metaanalysis of randomized controlled trials. Aging (Albany NY). 2020; 12(4): 4010–4039.
https://doi.org/10.18632/aging....
65.
Mojka K. Probiotyki, prebiotyki i synbiotyki – charakterystyka i funkcje. Probl Hig Epidemiol. 2014; 95(3): 541–549.
66.
Luca M, Chattipakorn SC, Sriwichaiin S, et al. CognitiveBehavioural Correlates of Dysbiosis: A Review. Int J Mol Sci. 2020; 21(14): 4834.
https://doi.org/10.3390/ijms21....
67.
Skonieczna-Żydecka K, Łoniewski I, Marlicz W, et al. Mikrobiota jelitowa jako potencjalna przyczyna zaburzeń funkcjonowania emocjonalnego człowieka. Med Dośw Mikrobiol. 2017; 69: 163–176.
68.
Wydro D, DąbrowskaBernstein B, Moskalik. Adaptogens correcting body›s response to stress and the disruption of homeostasis – helpful in the prevention of lifestyle diseases. Academy Of Aesthetic and Anti aging Medicine. 2015.
69.
Lopresti AL, Smith SJ, Malvi H, et al. An investigation into the stressrelieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, doubleblind, placebocontrolled study. Medicine (Baltimore). 2019 Sep; 98(37): e17186. doi: 10.1097/MD.0000000000017186.
70.
Choudhary D, Bhattacharyya S, Bose S. Efficacy and Safety of Ashwagandha (Withania somnifera (L.) Dunal) Root Extract in Improving Memory and Cognitive Functions. J Diet Suppl. 2017 Nov 2; 14(6): 599– 612.
https://doi.org/10.1080/193902....
71.
Lu J, Ma Y, Wu J, et al. A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed Pharmacother. 2019 Sep; 117: 109078.
https://doi.org/10.1016/j.biop....
73.
Sowndhararajan K, Deepa P, Kim M, et al. Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review. Brain Sci. 2018 Jun 11; 8(6): 104.
https://doi.org/10.3390/brains....
74.
Chong PS, Fung ML, Wong KH, et al. Therapeutic Potential of Hericium erinaceus for Depressive Disorder. Int J Mol Sci. 2019 Dec 25; 21(1): 163.
https://doi.org/10.3390/ijms21....
75.
Li IC, Lee LY, Tzeng TT, et al. Neurohealth Properties of Hericium erinaceus Mycelia Enriched with Erinacines. Behav Neurol. 2018 May 21; 2018: 5802634.
https://doi.org/10.1155/2018/5....
76.
Omar SH. Mediterranean and MIND Diets Containing Olive Biophenols Reduces the Prevalence of Alzheimer's Disease. Int J Mol Sci. 2019 Jun 7; 20(11): 27.
78.
BallarínNaya L, Malo S, MorenoFranco B. Effect of physical exercise and diet based interventions on the evolution of cognitive impairment to dementia in subjects older than 45 years. A systematic review. Rev Esp Salud Publica. 2021 Feb 24; 95: e202102032.