PL EN
PRACA PRZEGLĄDOWA
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel:
Procesy poznawcze warunku-ją prawidłowe funkcjonowanie organizmu, poprzez odbiór i analizę bodźców docierających ze środowiska. Odpowiednie żywienie stanowi podstawę profilaktyki deficytów poznawczych. Celem niniejszej pracy było opisanie wpływu diety na procesy poznawcze oraz związane z nimi zaburzenia.

Metody przeglądu:
W pracy dokonano analizy publikacji naukowych (m.in. metaanaliz, badań randomizowanych, przeglądów systematycznych) o tematyce medycznej i żywieniowej, z wyłączeniem case studies. Wyszukiwane przeprowadzono, korzystając z baz danych, takich jak PubMed, oraz z czasopism naukowych.

Opis stanu wiedzy:
Deficyty poznawcze objawiają się spadkiem wydajności i obniżeniem koncentracji. Najczęściej występują krótkotrwale i przemijają po ustaniu przyczyny. Mogą jednak stanowić objaw rozwijającej się choroby neurodegeneracyjnej. Wielość przyczyn powstawania zaburzeń poznawczych uniemożliwia całkowite ich wyeliminowanie lub zahamowanie. Czynnikami, na które mamy wpływ, są: masa ciała, żywność spożywana na co dzień, jakość mikroflory jelitowej oraz stosowane suplementy. Odpowiednio dobrana dieta, zawierająca m.in. witaminy z grupy B, przeciwutleniacze, produkty probiotyczne i nienasycone kwasy tłuszczowe, może tymczasowo poprawiać funkcje poznawcze oraz zapobiegać powstawaniu chorób neurodegeneracyjnych, które na dzień dzisiejszy są nieuleczalne. Obiecującą terapią uzupełniającą wydaje się być stosowanie probiotyków, jednak potwierdzenie tej tezy wymaga przeprowadzenia większej liczby badań

Podsumowanie:
Kluczem do utrzymania sprawnych funkcji poznawczych jest kompleksowe dbanie o żywienie i zdrowy tryb życia. Skuteczność w zapobieganiu chorobom otępiennym jest szczególnie wysoka przed wystąpieniem pierw-szych objawów. Odpowiednia dieta może zahamować rozwój chorób neurodegeneracyjnych, jednak nie wpływa na ich regresję


Introduction and objective:
Cognitive functions are the precondition of proper functioning of an organism in terms of reception and processing of stimuli coming from the environment. Proper nutrition is a basis of prevention of cognitive impairment. The aim of the presented study was to describe the effect of nutrition on cognitive functions, and the related cognitive disorders.

Review methods:
Scientific publications found in databases, e.g. PubMed and scientific journals were analyzed, including meta-analyses, randomized trials, and systematic reviews, concerning the scope of medical and nutritional problems, excluding case reports.

Abbreviated description of the state of knowledge:
Signs and symptoms of cognitive disorder include decrease in productivity and attention deficit. Most often these symptoms are transient and disappear with cessation of the underlying cause, but they may also be the sign of development of a neurodegenerative disease. Due to the fact that the development of cognitive disorders is multicausal, it is impossible to achieve its entire elimination or inhibition. The factors which we can modify are: body weight, nutrition, gut microbiota quality and dietary supplements. A suitable diet rich in vitamin B, antioxidants, probiotics and unsaturated fatty acids may temporarily improve cognitive functions and prevent neurodegenerative diseases which today remain incurable. Using probiotic supplements can be taken into consideration as a promising complementary therapy; however, it requires further research.

Summary:
Complex care of balanced diet and health promoting life mode is the key to maintaining cognitive functions. The efficiency in prevention of dementia is particularly high before the occurrence of the initial symptoms of the disease. Proper diet may inhibit the progress of neurodegenerative diseases; however, it has no effect on their regression

Lis MM. Wpływ żywienia na funkcje poznawcze. Med Og Nauk Zdr. 2021; 27(4): 365–371. doi: 10.26444/monz/138921
 
REFERENCJE (78)
1.
Żmijewska A. Psychologia, zeszyt naukowy nr 2. Wyższa Szkoła Eko­nomiczno­Humanistyczna w Skierniewicach; 2011. p. 10–21. ISSN – 2 0 8 2 – 818 7.
 
2.
Magierski R, Antczak­Domagała K, Sobów T. Dieta jako czynnik pro­tekcyjny otępienia. Aktualn Neurol 2014; 14(3): 167–174. doi: 10.15557/AN.2014.0019. http://neurologia.com.pl/index... (access: 28.02.2021 r.).
 
3.
Locke A, Schneiderhan J, Zick SM. Diets for Health: Goals and Guide­lines. Am Fam Physician. 2018 Jun 1; 97(11): 721–728.
 
4.
Gabryelewicz T. Łagodne zaburzenia poznawcze. Postępy Nauk Me­dycznych. 2011; 24(8).
 
5.
Hausz­Piskorz B, Buczkowski K. Diagnostyka i leczenie choroby Alz­heimera w warunkach praktyki lekarza rodzinnego. Forum Medycyny Rodzinnej 2013; 7(4): 198–207.
 
6.
Departament Analiz i Strategii. Cukier, otyłość – konsekwencje. Na­rodowy Fundusz Zdrowia; 2019.
 
7.
Gumułka A. Światowy Dzień Otyłości. Ministerstwo Nauki i Szkolnictwa Wyższego. https://naukawpolsce.pap.pl/ak... (access: 4.03.21 r.).
 
8.
Łopuszańska U, Skórzyńska­Dziduszko K, Prendecka M, et al. Nadwaga i otyłość a zaburzenia funkcji poznawczych w grupie osób chorują­cych psychicznie. Psychiatr Pol. 2016; 50(2): 393–406. http://dx.doi.org/10.12740/PP/....
 
9.
Martin A, Booth JN, Laird Y, et al. Physical activity, diet and other behavioural interventions for improving cognition and school achie­vement in children and adolescents with obesity or overweight. Co­chrane Database Syst Rev. 2018 Mar 2; 3(3): CD009728. https://doi.org/10.1002/146518....
 
10.
Anderson YC, Kirkpatrick K, Dolan GMS, et al. Do changes in weight status affect cognitive function in children and adolescents with obesity? A secondary analysis of a clinical trial. BMJ Open. 2019 Feb 19; 9(2): e021586. http://dx.doi.org/10.1136/bmjo....
 
11.
Bidzan M, Bidzan L. Masa ciała a zaburzenia czynności poznawczych. Neuropsychiatria i Neuropsychologia 2020; 15(1–2): 51–59. https://doi.org/10.5114/nan.20....
 
12.
Gibson GE, Hirsch JA, Fonzetti P, et al. Vitamin B1 (thiamine) and dementia. Ann NY Acad Sci. 2016 Mar; 1367(1): 21–30. https://doi.org /10.1111/nyas.13031.
 
13.
Jarosz M, Rychlik E, Stoś K, et al. Normy żywienia dla populacji Polski i ich zastosowanie. Narodowy Instytut Zdrowia Publicznego; 2020. p. 197–239.
 
14.
Gasperi V, Sibilano M, Savini I, et al. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci. 2019; 20(4): 974. https://doi.org/10.3390/ijms20....
 
15.
An, Y, Feng L, Zhang X, et al. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox­related genes NUDT15 and TXNRD1. Clin Epigenet. 2019; 11(139). https://doi.org/10.1186/s13148....
 
16.
McNulty H, Rollins M, Cassidy T, et al. Effect of continued folic acid supplementation beyond the first trimester of pregnancy on cognitive performance in the child: a follow­up study from a randomized con­trolled trial (FASSTT Offspring Trial). BMC Med. 2019; 17(196). https://doi.org/10.1186/s12916....
 
17.
Cecchetti L, Lettieri G, Handjaras G, et al. Brain Hemodynamic Inter­mediate Phenotype Links Vitamin B12 to Cognitive Profile of Healthy and Mild Cognitive Impaired Subjects. Neural Plasticity. 2019; Article ID 6874805. https://doi.org/10.1155/2019/6....
 
18.
Ford TC, Downey LA, Simpson T, et al. The Effect of a High­Dose Vi­tamin B Multivitamin Supplement on the Relationship between Brain Metabolism and Blood Biomarkers of Oxidative Stress: A Randomized Control Trial. Nutrients. 2018; 10(12): 1860. https://doi.org/10.3390/nu1012....
 
19.
McCleery J, Abraham RP, Denton DA, et al. Vitamin and mineral su­pplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst Rev. 2018 Nov 1; 11(11): CD011905. https://doi.org/10.1002/146518....
 
20.
Sharma M, Tiwari M, Tiwari RK. Hyperhomocysteinemia: Impact on Neurodegenerative Diseases. Basic Clin Pharmacol Toxicol. 2015 Nov; 117(5): 287–96. ht t ps://doi.org /10.1111/ bcpt.12424.
 
21.
Dangour A, Allen E, Clarke R, et al. Effects of vitamin B­12 supplementa­tion on neurologic and cognitive function in older people: a randomized controlled trial. The American Journal of Clinical Nutrition. 2015; 102(3): 639–647. https://doi.org/10.3945/ajcn.1....
 
22.
Rutjes AW, Denton DA, Di Nisio M, et al. Vitamin and mineral supple­mentation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst Rev. 2018 Dec 17; 12(12): CD011906. https://doi.org/10.1002/146518....
 
23.
Bekdash RA. Neuroprotective Effects of Choline and Other Me­thyl Donors. Nutrients. 2019; 11(12): 2995. https://doi.org/10.3390/nu1112....
 
24.
Blusztajn JK, Slack BE, Mellott TJ. Neuroprotective Actions of Dietary Choline. Nutrients. 2017; 9(8): 815. Published 2017 Jul 28. https://doi.org/10.3390/nu9080....
 
25.
Caudill MA, Strupp BJ, Muscalu L, et al. Maternal choline supple­mentation during the third trimester of pregnancy improves infant information processing speed: a randomized, double­blind, controlled feeding study. FASEB J. 2018; 32(4): 2172–2180. https://doi.org/10.1096/fj.201... R.
 
26.
Derbyshire E, Obeid R. Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nu­trients. 2020; 12(6): 1731. https://doi.org/10.3390/nu1206....
 
27.
Majewska M, Czeczot H. Flawonoidy w profilaktyce i terapii. Farm Pol. 2009; 65(5): 369–377.
 
28.
Bowtell JL, Aboo­Bakkar Z, Conway ME, et al. Enhanced task­related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab. 2017 Jul; 42(7): 773–779. https://doi.org/10.1139/apnm­2....
 
29.
McNamara RK, Kalt W, Shidler MD, et al. Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging. 2018; 64: 147–156. https://doi.org/10.1016/j.neur....
 
30.
Boespflug EL, Eliassen JC, Dudley JA, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci. 2018 May; 21(4): 297–305. https://doi.org/10.1080/102841....
 
31.
Miller K, Feucht W, Schmid M. Bioactive Compounds of Strawberry and Blueberry and Their Potential Health Effects Based on Human Intervention Studies: A Brief Overview. Nutrients. 2019 Jul 2; 11(7): 1510. https://doi.org/10.3390/nu1107....
 
32.
Whyte AR, Cheng N, Butler LT, et al. Flavonoid­Rich Mixed Berries Maintain and Improve Cognitive Function Over a 6 h Period in Young Healthy Adults. Nutrients. 2019; 11(11): 2685. https://doi.org/10.3390/nu1111....
 
33.
Barfoot KL, May G, Lamport DJ, et al. The effects of acute wild blue­berry supplementation on the cognition of 7–10­year­old schoolchil­dren. Eur J Nutr. 2019 Oct; 58(7): 2911–2920. https://doi.org/10.1007/s00394....
 
34.
Khalid S, Barfoot KL, May G, et al. Effects of Acute Blueberry Flavo­noids on Mood in Children and Young Adults. Nutrients. 2017; 9(2): 158. https://doi.org/10.3390/nu9020....
 
35.
Traupe I, Giacalone M, Agrimi J, et al. Postoperative cognitive dys­function and short­term neuroprotection from blueberries: a pilot study. Minerva Anestesiol. 2018 Dec; 84(12): 1352–1360. doi: 10.23736/S0375­9393.18.12333­9.
 
36.
Nilsson A, Salo I, Plaza M, et al. Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; A randomized cross­over study in healthy older adults. PLoS One. 2017 Nov 15; 12(11): e0188173. https://doi.org/10.1371/journa l.pone.0188173.
 
37.
Zdrojewicz Z, Grześkowiak K, Łukasiewicz M. Wpływ spożycia cze­kolady na organizm człowieka. Medycyna Rodzinna. 2017 Marzec; 273–243. http://doi.org/10.25121/MR.201....
 
38.
Mastroiacovo D, Kwik­Uribe C, Grassi D, et al. Cocoa flavanol con­sumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) Study­­a randomized controlled trial. Am J Clin Nutr. 2015 Mar; 101(3): 538–48. https://doi.org/10.3945/ajcn.1....
 
39.
Sumiyoshi E, Matsuzaki K, Sugimoto N, et al. Sub­Chronic Consump­tion of Dark Chocolate Enhances Cognitive Function and Releases Nerve Growth Factors: A Parallel­Group Randomized Trial. Nutrients. 2019 Nov 16; 11(11): 2800. https://doi.org/10.3390/nu1111....
 
40.
Pelczyńska M, Bognański P. Prozdrowotne właściwości kawy. Forum Zaburzeń Metabolicznych 2019; 10(3): 112–120.
 
41.
Driscoll I, Shumaker SA, Snively BM, et al. Relationships Between Caffeine Intake and Risk for Probable Dementia or Global Cognitive Impairment: The Women's Health Initiative Memory Study. J Gerontol A Biol Sci Med Sci. 2016 Dec; 71(12): 1596–1602. https://doi.org/10.1093/gerona....
 
42.
McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine's effects on cognitive, physical and occupational performance. Neu­rosci Biobehav Rev. 2016 Dec; 71: 294–312. https://doi.org/10.1016/j.neub....
 
43.
Haskell­Ramsay CF, Jackson PA, Forster JS, et al. The Acute Effects of Caffeinated Black Coffee on Cognition and Mood in Healthy Young and Older Adults. Nutrients. 2018 Sep 30; 10(10): 1386. https://doi.org/10.3390/nu1010....
 
44.
McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine›s effects on cognitive, physical and occupational performance. Neu­rosci Biobehav Rev. 2016 Dec; 71: 294–312. https://doi.org/10.1016/j.neub....
 
45.
Christensen ZP, Freedman EG, Foxe JJ. Caffeine exposure in utero is associated with structural brain alterations and deleterious neurocog­nitive outcomes in 9–10 year old children. Neuropharmacology. 2021 Jan 30; 186: 108479. https://doi.org/10.1016/j.neur....
 
46.
Materac E, Marczyński Z, Bodek KH. Rola kwasów tłuszczowych omega­3 i omega­6 w organizmie człowieka. Bromat Chem Toksykol. 2013; 46(2): 225–233.
 
47.
Shulkin M, Pimpin L, Bellinger D, et al. n­3 Fatty Acid Supplementa­tion in Mothers, Preterm Infants, and Term Infants and Childhood Psychomotor and Visual Development: A Systematic Review and Meta­­Analysis. J Nutr. 2018 Mar 1; 148(3): 409–418. https://doi.org/10.1093/jn/nxx....
 
48.
Handeland K, Øyen J, Skotheim S, et al. Fatty fish intake and attention performance in 14–15 year old adolescents: FINS­TEENS – a randomi­zed controlled trial. Nutr J. 2017 Oct 2; 16(1): 64. https://doi.org/10.1186/s12937....
 
49.
Stavrinou PS, Andreou E, Aphamis G, et al. The Effects of a 6­Month High Dose Omega­3 and Omega­6 Polyunsaturated Fatty Acids and Antioxidant Vitamins Supplementation on Cognitive Function and Functional Capacity in Older Adults with Mild Cognitive Impairment. Nutrients. 2020; 12(2): 325. https://doi.org/10.3390/nu1202....
 
50.
Phillips MA, Childs CE, Calder PC, et al. No Effect of Omega­3 Fatty Acid Supplementation on Cognition and Mood in Individuals with Cog­nitive Impairment and Probable Alzheimer's Disease: A Randomised Controlled Trial. Int J Mol Sci. 2015; 16(10): 24600–24613. https://doi.org/10.3390/ijms16....
 
51.
Shinto L, Quinn J, Montine T, et al. A randomized placebo­controlled pilot trial of omega­3 fatty acids and alpha lipoic acid in Alzheimer's disease J Alzheimers Dis. 2014; 38(1): 111–120. doi: 10.3233/JAD­130722.
 
52.
La Rosa F, Clerici M, Ratto D, et al. The Gut­Brain Axis in Alzheimer's Disease and Omega­3. A Critical Overview of Clinical Trials. Nutrients. 2018 Sep; 10(9), 1267. https://doi.org/10.3390/nu1009....
 
53.
Barnard ND, Bunner AE, Agarwal U. Saturated and trans fats and dementia: a systematic review. Neurobiol Aging. 2014 Sep; 35 Suppl 2: S65–73. https://doi.org/10.1016/j.neur....
 
54.
Cichosz G, Czeczot H. Kwasy tłuszczowe izomerii trans w diecie czło­wieka. Bromat Chem Toksykol. 2012; 45(2): 181–190.
 
55.
Skonieczna­Żydecka K, Łoniewki I, Maciejewska D, et al. Mikrobiota jelitowa i składniki pokarmowe jako determinanty funkcji układu nerowego. Aktualn Neurol. 2017; 17(4): 181–188.
 
56.
Karwowska Z, Majchrzak K. Wpływ błonnika na zróżnicowanie mikro­flory jelitowej. Bromat Chem Toksykol. 2015; 48(4): 701–709.
 
57.
Pushpanathan P, Mathew GS, Selvarajan S, Seshadri KG, Srikanth P. Gut microbiota and its mysteries. Indian J Med Microbiol. 2019 Apr­Jun; 37(2): 268–277. https://doi.org/10.4103/ijmm.I....
 
58.
Rudzki L, Frank M, Szulc A, et al. Od jelit do depresji – rola zaburzeń ciągłości bariery jelitowej i następcza aktywacja układu immunolo­gicznego w zapalnej hipotezie depresji. Neuropsychiatria i Neuropsy­chologia. 2012; 7(2).
 
59.
Karakuła­Juchnowicz H, Pankowicz H, Juchnowicz D, et al. Psychobio­tyki – nowe możliwości terapii zaburzeń afektywnych? Farmakoterapia w Psychiatrii i Neurologii. 2015; 31(3–4): 229–242.
 
60.
Skonieczna­Żydecka K, Łoniewski I, Marlicz W, et al. Mikrobiota jeli­towa jako potencjalna przyczyna zaburzeń funkcjonowania emocjonal­nego człowieka. Med Dośw Mikrobiol. 2017; 69: 163–176.
 
61.
Bagga D, Reichert JL, Koschutnig K, et al. Probiotics drive gut micro­biome triggering emotional brain signatures. Gut Microbes. 2018; 9(6): 486 –496. https://doi.org/10.1080/194909....
 
62.
Steenbergen L, Sellaro R, van Hemert S, et al. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. 2015 Aug; 48: 258–64. https://doi.org/10.1016/j.bbi.....
 
63.
Ton AMM, Campagnaro BP, Alves GA, et al. Oxidative Stress and Dementia in Alzheimer's Patients: Effects of Synbiotic Supplementa­tion. Oxid Med Cell Longev. 2020 Jan 13; 2020: 2638703. https://doi.org/10.1155/2020/2....
 
64.
Den H, Dong X, Chen M, et al. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer's disease or mild cognitive impairment – a meta­analysis of randomized controlled trials. Aging (Albany NY). 2020; 12(4): 4010–4039. https://doi.org/10.18632/aging....
 
65.
Mojka K. Probiotyki, prebiotyki i synbiotyki – charakterystyka i funkcje. Probl Hig Epidemiol. 2014; 95(3): 541–549.
 
66.
Luca M, Chattipakorn SC, Sriwichaiin S, et al. Cognitive­Behavioural Correlates of Dysbiosis: A Review. Int J Mol Sci. 2020; 21(14): 4834. https://doi.org/10.3390/ijms21....
 
67.
Skonieczna­-Żydecka K, Łoniewski I, Marlicz W, et al. Mikrobiota jeli­towa jako potencjalna przyczyna zaburzeń funkcjonowania emocjonal­nego człowieka. Med Dośw Mikrobiol. 2017; 69: 163–176.
 
68.
Wydro D, Dąbrowska­Bernstein B, Moskalik. Adaptogens correcting body›s response to stress and the disruption of homeostasis – helpful in the prevention of lifestyle diseases. Academy Of Aesthetic and Anti aging Medicine. 2015.
 
69.
Lopresti AL, Smith SJ, Malvi H, et al. An investigation into the stress­­relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, double­blind, placebo­controlled study. Medicine (Baltimore). 2019 Sep; 98(37): e17186. doi: 10.1097/MD.0000000000017186.
 
70.
Choudhary D, Bhattacharyya S, Bose S. Efficacy and Safety of Ashwa­gandha (Withania somnifera (L.) Dunal) Root Extract in Improving Memory and Cognitive Functions. J Diet Suppl. 2017 Nov 2; 14(6): 599– 612. https://doi.org/10.1080/193902....
 
71.
Lu J, Ma Y, Wu J, et al. A review for the neuroprotective effects of an­drographolide in the central nervous system. Biomed Pharmacother. 2019 Sep; 117: 109078. https://doi.org/10.1016/j.biop....
 
72.
Liu Y, Gao J, Peng M, et al. A Review on Central Nervous System Effects of Gastrodin. Front Pharmacol. 2018 Feb 2; 9: 24. https://doi.org/10.3389/fphar.....
 
73.
Sowndhararajan K, Deepa P, Kim M, et al. Neuroprotective and Cog­nitive Enhancement Potentials of Baicalin: A Review. Brain Sci. 2018 Jun 11; 8(6): 104. https://doi.org/10.3390/brains....
 
74.
Chong PS, Fung ML, Wong KH, et al. Therapeutic Potential of Hericium erinaceus for Depressive Disorder. Int J Mol Sci. 2019 Dec 25; 21(1): 163. https://doi.org/10.3390/ijms21....
 
75.
Li IC, Lee LY, Tzeng TT, et al. Neurohealth Properties of Hericium erinaceus Mycelia Enriched with Erinacines. Behav Neurol. 2018 May 21; 2018: 5802634. https://doi.org/10.1155/2018/5....
 
76.
Omar SH. Mediterranean and MIND Diets Containing Olive Biophe­nols Reduces the Prevalence of Alzheimer's Disease. Int J Mol Sci. 2019 Jun 7; 20(11): 27.
 
77.
https://doi.org/10.3390/ijms20... W, Dziendzikowska K. The Role of Selected Bioactive Com­pounds in the Prevention of Alzheimer's Disease. Antioxidants (Basel). 2020 Mar 11; 9(3): 229. https://doi.org/10.3390/antiox....
 
78.
Ballarín­Naya L, Malo S, Moreno­Franco B. Effect of physical exercise and diet based interventions on the evolution of cognitive impairment to dementia in subjects older than 45 years. A systematic review. Rev Esp Salud Publica. 2021 Feb 24; 95: e202102032.
 
eISSN:2084-4905
ISSN:2083-4543
Journals System - logo
Scroll to top