PL EN
PRACA PRZEGLĄDOWA
Wpływ mikrobioty macicy na zdrowie kobiety i jej potomstwa
 
Więcej
Ukryj
1
Zakład Biologii Rozwoju Człowieka, Wydział Nauk o Zdrowiu, Collegium Medicum, Uniwersytet Jagielloński, Polska
 
2
Katedra Biologii Medycznej, Wydział Nauk o Zdrowiu, Collegium Medicum, Uniwersytet Jagielloński, Polska
 
 
Autor do korespondencji
Barbara Macura   

Zakład Biologii Rozwoju Człowieka, Wydział Nauk o Zdrowiu, Collegium Medicum, Uniwersytet Jagielloński, Polska
 
 
Med Og Nauk Zdr. 2020;26(3):230-239
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie:
Powszechnie wiadomo, że obecność mikrobioty w organizmie jest ważna dla zdrowia człowieka. W ostatnich latach postęp technik biologii molekularnej nie tylko umożliwił potwierdzenie obecności drobnoustrojów w układzie pokarmowym, oddechowym i moczowym człowieka, ale również doprowadził do wykrycia obecności drobnoustrojów w narządach do tej pory uznawanych za sterylne, takich jak jama macicy.

Cel pracy:
W niniejszej pracy dokonano próby opisania składu mikrobioty macicy oraz jej roli fizjologicznej. Ponadto przed-stawiono ewentualny wpływ zaburzeń w składzie mikrobioty na rozwój stanów patologicznych w obrębie żeńskiego układu rozrodczego

Opis stanu wiedzy:
Najnowsze doniesienia wskazują na możliwość kolonizacji drobnoustrojami płynu owodniowego, krwi pępowinowej oraz łożyska. Fakt ten sugeruje możliwość wpływu mikrobioty na funkcjonowanie układu rozrodczego i przebieg ciąży, a także na rozwój i stan zdrowia płodu. Stan mikrobioty macicy może być również czynnikiem wpływają-cym na powodzenie technik wspomaganego rozrodu. Warto podkreślić, że niektóre doniesienia wskazują również na zależność pomiędzy ekspozycją na mikrobiotę w prenatalnym okresie życia a predyspozycjami do pojawienia się pewnych chorób w postnatalnym okresie życia.

Podsumowanie:
Wpływ mikrobioty macicy na zaburzenia płodności oraz rozwój płodu i zdrowie przyszłego noworodka stanowi ważne pole dalszych badań naukowych. W przyszłości stan mikrobioty żeńskiego układu rozrodczego powinien odgrywać ważną rolę w codziennej praktyce klinicznej

Introduction:
It is well known that the microbiota of the human body is important for human health. The latest technological advances in molecular biology not only confirm the presence of microbial communities in the digestive, respiratory and urinary tracts, but have also led to the detection of the presence of microbiota in niches, previously considered as sterile, for example, in the uterus.

Objective:
In this review we attempt to define the composition of uterine microbiota and its physiological role in the female genital tract. Moreover, we present possible consequences of changes in uterine microbiota composition on the development of gynaecologic disorders.

State of knowledge:
Recent findings suggest the presence of bacteria in amniotic fluid, the umbilical cord blood and in the placenta. This data imply the influence of the uterine microbiota on reproductive and obstetric outcomes, as well as on foetal development and health status. The state of uterine microbiota can influence the efficiency of assisted reproductive technology. Some evidence suggesting a relationship between prenatal microbiota exposure and increased predisposition to some diseases in adulthood is particularly important.

Conclusions:
The influence of the uterine microbiota on fertility disorders, foetus development and newborn health is an important direction of research. In the future, the status of uterine microbiota should play an important role in everyday clinical practice.
Macura B, Majewska-Szczepanik M, Strzępa A, Szczepanik M. Wpływ mikrobioty macicy na zdrowie kobiety i jej potomstwa. Med Og Nauk Zdr. 2020; 26(3): 230–239. doi: 10.26444/monz/124891
REFERENCJE (52)
1.
Baker JM, Chase DM, Herbst-Kralovetz MM. Uterine microbiota: residents, tourists, or invaders? Front Immunol. 2018; 9: 1–16. doi: 10.3389/fimmu.2018.00208.
 
2.
D’Argenio V. The prenatal microbiome – a new player for human health. High-Throughput. 2018; 38: 1–10. doi: 10.3390/ht7040038.
 
3.
Benner M, Ferwerda G, Joosten I, van der Molen RG. How uterine microbiota might be responsible for receptive, fertile endometrium. Hum Reprod Update. 2018; 24: 393–415.
 
4.
Franasiak JM, Scott RT. Endometrial microbiome. Curr Opin Obstet Gynecol. 2017; 29: 146–152.
 
5.
Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypo-theses: implications for research on the pioneer infant microbiome. Microbiome. 2017; 48: 1–19. doi: 10.1186/s40168-017-0268-4.
 
6.
Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014; 237: 1–22. doi: 10.1126/scitranslmed.3008599.
 
7.
Koedooder R, Mackens S, Budding A, Fares D, Blockeel C, La-ven J, et al. Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum Reprod Update. 2019; 25: 298–325.
 
8.
Altmäe S. Commentary: Uterine microbiota: residents, tourists, or invaders? Front Immunol. 2018; 9: 1–3. doi: 10.3389/fimmu.2018.01874.
 
9.
Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z, et al. The microbiota continuum along the female reproductive tract and its relation to uterine – related diseases. Nat Commun. 2017; 875: 1–11. doi: 10.1038/s41467-017-00901-0.
 
10.
Younes JA, Lievens E, Hummelen R, Van der Westen R, Reid G, Petrova MI. Women and their microbes: the unexpected friendship. Trends Microbiol. 2018; 26: 16–32.
 
11.
Blacha A, Machczyński M. Ocena wybranych wykładników stanu zapalnego u kobiet ciężarnych w kontekście czystości mikrobiologicz-nej pochwy. Rozprawa doktorska wspólna, Uniwersytet Medyczny im. K. Marcinkowskiego w Poznaniu, Wydział Lekarski II, Poznań, 2 015 ; 9 –27.
 
12.
Li F, Chen C, Wei W, Wang Z, Dai J, Hao L, et al. The metagenome of the female upper reproductive tract. GigaScience. 2018; 7: 1–8. doi: 10.1093/gigascience/giy107.
 
13.
Moreno I, Franasiak JM. Endometrial microbiota – new player in town. Fertil Steril. 2017; 108: 32–39.
 
14.
D’Ippolito S, Di Nicuolo F, Pontecorvi A, Gratta M, Scambia G, Di Simone N. Endometrial microbes and microbiome: recent insights on the inflammatory and immune „players” of the human endometrium. Am J Reprod Immunol. 2018; 80: 1–8. doi: 10.1111/aji.13065.
 
15.
Pelzer ES, Willner D, Buttini M, Huygens F. A role for the endome-trial microbiome in dysfunctional menstrual bleeding. Antonie van Leeuwenhoek. 2018; 111: 933–943.
 
16.
Bellver J, Simón C. Implantation failure of endometrial origin: what is new? Curr Opin Obstet Gynecol. 2018; 30: 229–235.
 
17.
Bracewell-Milnes T, Saso S, Nikolaou D, Norman-Taylor J, Johnson M, Thum M-Y: Investigating the effect of an abnormal cervico-vaginal and endometrial microbiome on assisted reproductive technologies: a syste-matic review. Am J Reprod Immunol. 2018; 80: 1–17. doi: 10.1111/aji.13037.
 
18.
Pelzer E, Gomez-Arango LF, Barrett HL, Nitert MD. Review: maternal health and the placental microbiome. Placenta. 2017; 54: 30–37.
 
19.
Wassenaar TM, Panigrahi P. Is a foetus developing in a sterile envi-ronment? Lett Appl Microbiol. 2014; 59: 572–579.
 
20.
Zhu L, Luo F, Hu W, Han Y, Wang Y, Zheng H, et al. Bacterial commu-nities in the womb during healthy pregnancy. Front Microbiol. 2018; 9: 1– 6. doi: 10.3389/fmicb.2018.02163.
 
21.
Leiby JS, McCormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, et al. Lack of detection of a human placenta microbiome in sam-ples from preterm and term deliveries. Microbiome. 2018; 196: 1–11. doi: 10.1186/s40168-018-0575-4.
 
22.
Rehbinder EM, Lødrup Carlsen KC, Staff AC, Angell IL, Landrø L, Hilde K, et al. Is amniotic fluid of women with uncomplicated term pregnancies free of bacteria? Am J Obstet Gynecol. 2018; 219: 289.e1-289.e12. doi: 10.1016/j.ajog.2018.05.028.
 
23.
Vinturache AE, Gyamfi-Bannerman C, Hwang J, Mysorekar IU, Ja-cobsson B. Maternal microbiome – a pathway to preterm birth. Semin. Fetal Neonatal Med. 2016; 21: 94–99.
 
24.
Solt I. The human microbiome and the great obstetrical syndromes: a new frontier in maternal – fetal medicine. Best Pract Res Clin Obstet Gynaecol. 2015; 29: 165–175.
 
25.
Chen HJ, Gur TL. Intrauterine microbiota: missing, or the missing link? Trends Neurosci. 2019; 30: 1–12. doi: 10.1016/j.tins.2019.03.008.
 
26.
Cauchie M, Desmet S, Lagrou K. Candida and its dual lifestyle as a commensal and a pathogen. Res Microbiol. 2017; 168: 802–810. doi: 10.1016/j.resmic.2017.02.005.
 
27.
Onderdonk AB, Delaney ML, Fichorova RN. The human microbiome during bacterial vaginosis. Clin Microbiol Rev. 2016; 29: 223–238. doi: 10.1128/CMR.00075-15.
 
28.
Ravel J, Gajer P, Abdo Z, Schneider M, Koenig SSK, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011; 108: 4680–4687. doi: 10.1073/pnas.1002611107.
 
29.
Lamont RF. Advances in the prevention of infection-related preterm birth. Front Immunol. 2015; 16: 566. doi: 10.3389/fimmu.2015.00566.
 
30.
Diop K, Dufour J-C, Levasseur A, Fenollar F. Exhaustive repertoire of human vaginal microbiota. Human Microbiome Journal. 2019; 11: 100051.
 
31.
DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, Roba-czewska A, et al. Temporal and spatial variation of the human micro-biota during pregnancy. Proc Natl Sci USA. 2015; 112: 11060–11065. doi: 10.1073/pnas.1502875112.
 
32.
Greenbaum S, Greenbaum G, Moran-Gilad J, Weintruab AY. Ecolo-gical dynamics of the vaginal microbiome in relation to health and disease. Am J Obstet Gynecol. 2019; 220: 324–335. doi: 10.1016/j.ajog.2018.11.1089.
 
33.
Sobouti B, Fallah S, Mobayen M, Noorbakhsh S, Ghavami Y. Coloniza-tion of Mycoplasma hominis and Ureaplasma urealyticum in pregnant women and their transmission to offspring. Iran J Microbiol. 2014; 6: 219–24.
 
34.
Waites KB, Katz B, Schelonka RL. Mycoplasmas and Ureaplasmas as neonatal pathogens. Clin Microbiol Rev. 2005; 18: 757–89.
 
35.
Patras KA, Nizet V. Group B streptococcal maternal colonization and neonatal disease: molecular mechanisms and preventative approaches. Front Pediatr. 2018; 6: 27. doi: 10.3389/fped.2018.00027.
 
36.
Strzępa A, Lobo FM, Majewska-Szczepanik M, Szczepanik M. An-tibiotics and autoimmune and allergy diseases: Causative factor or treatment? Int Immunopharmacol. 2018; 65: 328–341. doi: 10.1016/j.intimp.2018.10.021.
 
37.
Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbio-me and its relation to health and disease. Oral Dis. 2016; 23: 276–286.
 
38.
Fujiwara N, Tsuruda K, Iwamoto Y, Kato F, Odaki T, Yamane N, et al. Significant increase of oral bacteria in the early pregnancy period in Japanese women. Investig Clin Dent. 2017; 8: doi: 10.1111/jicd.12189.
 
39.
Cassini MA, Pilloni A, Condo SG, Vitali LA, Pasquantonio G, Cerroni L. Periodontal bacteria in the genital tract: are they related to adverse pregnancy outcome? Int J Immunopathol Pharmacol. 2013; 26: 931–939.
 
40.
Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015; 15: 30–44.
 
41.
Komine-Aizawa S, Aizawa S, Hayakawa S. Periodontal diseases and adverse pregnancy outcomes. J Obstet Gynaecol Res. 2019; 45: 5–12. doi: 10.1111/jog.13782.
 
42.
Corbella S, Taschieri S, Francetti L, De Siena F, Del Fabbro M. Periodon-tal disease as a risk factor for adverse pregnancy outcomes: a systematic review and meta-analysis of case-control studies. Odontology. 2012; 100: 232–240.
 
43.
Wei BJ, Chen YJ, Yu L, Wu B. Periodontal disease and risk of preec-lampsia: a meta-analysis of observational studies. PLoS One. 2013; 8: e70901.
 
44.
Esteves Lima RP, Cyrino RM, De Carvalho DB, Oliveira da Silveira J, Martins CC, Miranda Cota LO, et al. Association between periodontitis and gestational diabetes mellitus: systematic review and meta-analysis. J Periodontol. 2016; 87: 48–57.
 
45.
Ao M, Miyauchi M, Furusho H, Inubushi T, Kitagawa M, Nagasaki A, et al. Dental infection of Porphyromonas gingivalis induces preterm birth in mice. PLoS One. 2015; 10: e0137249.
 
46.
Brennan CA, Garrett WS. Fusobacterium nucleatum – symbiont, op-portunist and oncobacterium. Nat Rev Microbiol. 2019; 17, 156–166. https://doi.org/10.1038/s41579....
 
47.
Swati P, Thomas B, Vahab SA, Kapaettu S, Kushtagi P. Simultaneous detection of periodontal pathogens in subgingival plaque and placenta of women with hypertension in pregnancy. Arch Gynecol Obstet. 2012; 285: 613–619.
 
48.
Vanterpool SF, Been JV, Houben ML, Nikkels PG, de Krijger RR, Zim-mermann LJ, et al. Porphyromonas gingivalis within placental villous mesenchyme and umbilical cord stroma is associated with adverse pregnancy outcome. PLoS One. 2016; 11: e0146157.
 
49.
Jiang H, Zhang Y, Xiong X, Harville EW, Karmin O, Qian X. Salivary and serum inflammatory mediators among pre-conception women with periodontal disease. BMC Oral Health. 2016; 16: 131.
 
50.
Kell BD, Kenny LC. A dormant microbial component in the develo-pment of preeclampsia. Front Med (Lausanne). 2016; 3: 60. doi: 10.3389/fmed.2016.00060.
 
51.
Takii R, Kadowaki T, Tsukuba T, Yamamoto K. Inhibition of gingipains prevents Porphyromonas gingivalis-induced preterm birth and fetal death in pregnant mice. Eur J Pharmacol. 2018; 824: 48–56.
 
52.
Parnell LA, Briggs CM, Mysorekar IU. Maternal microbiomes in pre-term birth: recent progress and analytical pipelines. Semin Perinatol. 2017; 41: 392–400.
 
eISSN:2084-4905
ISSN:2083-4543
Journals System - logo
Scroll to top