PRACA PRZEGLĄDOWA
Terapie eksperymentalne w leczeniu zmian stawowych u chorych z reumatoidalnym zapaleniem stawów
Więcej
Ukryj
1
Centrum Medyczne, Kraków
2
Zakład Genoterapii, Collegium Medicum, Uniwersytet Mikołaja Kopernika, Bydgoszcz
Autor do korespondencji
Piotr Kopiński
Zakład Genoterapii, Collegium Medicum, Uniwersytet Mikołaja Kopernika, ul. Marii Skłodowskiej-Curie 9, 85-094 Bydgoszcz,
Med Og Nauk Zdr. 2016;22(2):98-103
SŁOWA KLUCZOWE
STRESZCZENIE
Wprowadzenie:
Reumatoidalne zapalenie stawów (RZS) jest jedną z najczęstszych chorób tkanki łącznej o podłożu autoimmunologicznym. Charakteryzuje się zwłaszcza stanem zapalnym stawów, prowadzącym do postępującego uszkodzenia i utraty ich czynności, czego następstwem jest niepełnosprawność motoryczna chorego.
Cel pracy:
Celem pracy jest zestawienie wybranych nowoczesnych metod leczenia zmian stawowych w RZS, będących obecnie we wczesnych i zaawansowanych fazach badań klinicznych.
Skrócony opis stanu wiedzy:
Obecnie leczenie RZS opiera się przede wszystkim na postępowaniu objawowym, stosowaniu biologicznych i syntetycznych leków modyfikujących przebieg choroby, a także na rehabilitacji oraz chirurgicznym leczeniu powikłań. Prowadzone są badania nad nowymi, obiecującymi metodami leczenia, jak immunoterapia i terapia genowa, dostawowe podawanie osocza bogatopłytkowego (platelet-rich plasma, PRP), mezenchymalnych komórek macierzystych, a także nad łączeniem ww. metod.
Podsumowanie:
Szybki postęp w leczeniu RZS obserwowany w ostatnich latach zawdzięczamy głównie wprowadzeniu leczenia biologicznego. Jednak nadal nie obserwuje się zadowalającej odpowiedzi klinicznej u istotnej grupy chorych, pomimo długotrwałego leczenia konwencjonalnego. Istnieje nadzieja, że opisane w pracy metody, wymierzone precyzyjnie w molekularne patomechanizmy choroby, istotnie przybliżą rozwiązanie problemu leczenia zmian stawowych w RZS.
Introduction:
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases affecting connective tissue. It is characterized by inflammation of the joints leading to progressive damage and loss of joint function, and subsequently to physical disability of the patient.
Objective:
The aim of the article is to provide an overview of the experimental RA therapies of articular lesions that are currently in early and advanced stages of clinical development.
Brief description:
RA management is presently based on symptomatic treatment, taking biological and synthetic disease-modifying antirheumatic drugs (DMARDs), physiotherapy and surgical correction of articular complications. There are many drugs currently under investigation, such as immune and gene therapy, platelet rich plasma intraarticular injections, application of mesenchymal stem cells, as well as a combination of techniques listed above.
Summary:
Over the last few years, the rapid progress in RA treatment has been made by introduction of biological treatment. However, no satisfactory clinical response is observed in a significant group of patients, despite the long-term conventional treatment. Hopefully, the techniques described briefly in this review targeting molecular pathomechanisms, are believed to be useful in finding solutions in the treatment of RA articular lesions.
REFERENCJE (28)
1.
Smolen JS, Landewé R, Breedveld FC, Buch M, Burmester G, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann Rheum Dis. 2014; 73(3): 492–509.
2.
Lippross S, Moeller B, Haas H, Tohidnezhad M, Steubesand N, Wruck CJ, et al. Intraarticular injection of platelet-rich plasma reduces in-flammation in a pig model of rheumatoid arthritis of the knee joint. Arthritis Rheum. 2011; 63: 3344–3353.
3.
Kehoe O, Cartwright A, Askari A, El Haj AJ, Middleton J. Intra-articular injection of mesenchymal stem cells leads to reduced inflammation and cartilage damage in murine antigen-induced arthritis. J Transl Med. 2014; 12: 157,
http://www.translational-medic... (dostęp: 22.12.2015).
4.
Yang C, Robbins PD. Immunosuppressive Exosomes: A New Approach for Treating Arthritis. J Rheumatol. 2012; 573528:
http://www.ncbi.nlm. nih.gov/pmc/articles/PMC3324137/ (dostęp: 22.12.2015).
5.
Raeissadat SA, Rayegani SM, Babaee M, Ghorbani E. The Effect of Platelet-Rich Plasma on Pain, Function, and Quality of Life of Patients with Knee Osteoarthritis. Pain Res Treat. 2013; 165967:
http://www.ncbi. nlm.nih.gov/pmc/articles/PMC3872432/ (dostęp: 22.12.2015).
6.
El-Sharkawy H, Kantarci A, Deady J, Hasturk H, Liu H, Alshahat M, et al. Platelet-Rich Plasma: Growth Factors and Pro- and Anti-Inflam-matory Properties. J Periodontol. 2007; 78(4): 661–669.
7.
Xie X, Zhang C, Tuan RS. Biology of platelet-rich plasma and its clinical application in cartilage repair. Arthritis Res Ther. 2014; 16(1) 204:
http://www.ncbi.nlm.nih.gov/pm... (dostęp: 22.12.2015).
8.
Brand DD, Latham KA, Rosloniec EF. Collagen-induced arthritis. Nat Protoc. 2007; 2: 1269–1275.
9.
Magyari L, Varszegi D, Kovesdi E, Sarlos P, Farago B, Javorhazy A, et al. Interleukins and interleukin receptors in rheumatoid arthritis: Research, diagnostics and clinical implications. World J Orthop. 2014; 5(4): 516–536.
10.
Boraschi D, Dinarello CA. IL-18 in autoimmunity: review. Eur Cytokine Netw. 2006; 17: 224–252.
11.
Plater-Zyberk C, Joosten LAB, Helsen MMA, Sattonnet-Roche P, Siegfried C, Alouani S, et al. Therapeutic effect of neutralizing endogenous IL-18 activity in the collagen-induced model of arthritis. J Clin Invest. 2001; 108(12): 1825–1832.
12.
Khoury M, Escriou V, Courties G, Galy A, Yao R, Largeau C, et al. Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis Rheum. 2008; 58: 2356–2367.
13.
McCann FE, Perocheau DP, Ruspi G, Blazek K, Davies ML, Feldmann M, et al. Selective Tumor Necrosis Factor Receptor I Blockade Is Antiinflammatory and Reveals Immunoregulatory Role of Tumor Necrosis Factor Receptor II in Collagen-Induced Arthritis. Arthritis Rheumatol. 2014; 66: 2728–2738.
14.
Genovese MC, Greenwald M, Cho CS, Berman A, Jin L, Cameron GS, et al. A Phase II Randomized Study of Subcutaneous Ixekizumab, an Anti–Interleukin-17 Monoclonal Antibody, in Rheumatoid Arthritis Patients Who Were Naive to Biologic Agents or Had an Inadequate Response to Tumor Necrosis Factor Inhibitors. Arthritis Rheumatol. 2014; 66: 1693–1704.
15.
van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012; 64: 676–705.
16.
Kim SH, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, et al. Exosomes derived from IL-10-treated dendritic cells can suppress in-flammation and collagen-induced arthritis. J Immunol. 2005; 174(10): 6440–8.
17.
Martinez-Lostao L, García-Alvarez F, Basáñez G, Alegre-Aguarón E, Desportes P, Larrad L, et al. Liposome-bound APO2L/TRAIL is an effective treatment in a rabbit model of rheumatoid arthritis. Arthritis Rheum. 2010; 62(8): 2272–82.
18.
Li YT, Chen SY, Wang CR, Liu MF, Lin CC, Jou IM, et al. Brief Report: Amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum. 2012; 64: 3240–3245.
19.
Grandaunet B, Syversen SW, Hoff M, Sundan A, Haugeberg G, van Der Heijde D, et al. Association between high plasma levels of hepatocyte growth factor and progression of radiographic damage in the joints of patients with rheumatoid arthritis. Arthritis Rheum. 2011; 63: 662–669.
20.
Tsunemi S, Iwasaki T, Kitano S, Matsumoto K, Takagi-Kimura M, Kubo S, et al. Molecular targeting of hepatocyte growth factor by an antagonist, NK4, in the treatment of rheumatoid arthritis. Arthritis Res Ther. 2013; 15(4): R75,
http://arthritis-research.com/... (dostęp: 22.12.2015).
21.
Tang B, Cullins D L, Zhou J, Zawaski JA, Park H, Brand DD, et al. (2010). Modulation of collagen-induced arthritis by adenovirus-mediated intra-articular expression of modified collagen type II. Arthritis Res Ther. 2010; 12(4): R136,
http://arthritis-research.com/... (dostęp: 22.12.2015).
22.
Mease PJ, Hobbs K, Chalmers A, El-Gabalawy H, Bookman A, Keystone E, et al. Local delivery of a recombinant adenoassociated vector con¬taining a tumour necrosis factor alpha antagonist gene in inflammatory arthritis: a phase 1 dose-escalation safety and tolerability study. Ann Rheum Dis. 2009; 68: 1247–54.
23.
Mease PJ, Wei N, Fudman EJ, Kivitz AJ, Schechtman J, Trapp RG, et al. Safety, tolerability, and clinical outcomes after intraarticular injection of a recombinant adeno-associated vector containing a tumor necrosis factor antagonist gene: results of a phase 1/2. Study J Rheumatol. 2010; 37(4): 692–703.
24.
Wehling P, Reinecke J, Baltzer AW, Granrath M, Schulitz KP, Schultz C, et al. Clinical responses to gene therapy in joints of two subjects with rheumatoid arthritis. Hum Gene Ther. 2009; 20(2): 97–101.
25.
Kohn DB, Sadelain M, Glorioso JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer. 2003; 3: 477–488.
26.
Zheng ZH, Li XY, Ding J, Jia JF, Zhu P. Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology (Oxford). 2008; 47(1): 22–30.
27.
Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, et al. Intra-Articular Injection of Mesenchymal Stem Cells for the Treatment of Osteoarthritis of the Knee: A Proof-of-Concept Clinical Trial. Stem Cells. 2014; 32: 1254–1266.
28.
Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V, et al. Buffered Platelet-Rich Plasma Enhances Mesenchymal Stem Cell Proliferation and Chondrogenic Differentiation. Tissue Eng Part C Methods. 2009; 15(3): 431–435.