Uniwersytet Jagielloński Collegium Medicum, Wydział Nauk o Zdrowiu, Katedra Nauk Biomedycznych, Polska
Corresponding author
Barbara Macura
Uniwersytet Jagielloński Collegium Medicum, Wydział Nauk o Zdrowiu, Katedra Nauk Biomedycznych, Ul. Kopernika 7a, 31-034, Kraków, Polska
Introduction and objective: It is well-known that many functions of the human body are modulated by gut microbiota. Currently, the biochemical cross-talk between the gut microbiota and muscles is a new field of research. The aim of this study is the presentation of gut microbiotamuscle interactions with particular consideration of the role of physical activity.
Review methods: The literature search was performed using the PubMed and Google Scholar databases.
Brief description of the state of knowledge: Available findings of research on animal and human models indicate the presence of two-way relationship between physical activity and the state of gut microbiota. Currently, various mechanisms
of biochemical interactions between gut microbiota and muscle tissue are considered. Short chain fatty acids (SCFA) and other bioactive molecules produced by gut microbiota and various myokines e.g. interleukin 6 produced by muscle cells are suspected to be involved in cross-talk between gut microbiota and muscles. The level of these compounds is regulated mainly by diet and physical activity
Summary: Gut dysbiosis may contribute to the development of muscle dysfunction and, in turn, muscle dysfunction may facilitate development of gut dysbiosis. Appropriate diet and physical activity, as well as probiotics and prebiotics, may have beneficial prophylactic and therapeutic properties in muscle disorders. The recognition of accurate mechanisms of gut microbiota-muscle interactions is necessary to apply this knowledge in clinical practice.
REFERENCES(31)
1.
Ticinesi A, Lauretani F, Tana C, et al. Exercise and immune system as modulators of intestinal microbiome: implications for the gut-muscle axis hypothesis. EIR 2019; 25: 84–95.
Bilski J, Pierzchalski P, Szczepanik M, et al. Multifactorial mechanism of sarcopenia and sarcopenic obesity. Role of physical exercise, microbiota and myokines. Cells 2022; 11(1): 160. doi: 10.3390/cells11010160.
Codella R, Luzi L, Ileana Terruzzi I. Exercise has the guts: how physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis. 2018; 50(4): 331–341. doi: https://doi.org/10.1016/j.dld.....
Gizard F, Fernandez A, De Vadder F. Interactions between gut microbiota and skeletal muscle. Nutr Metab Insights. 2020; 13. doi: 10.1177/1178638820980490.
Lahiri S, Kim H, Garcia-Perez I, et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med. 2019; 11. doi: 10.1126/scitranslmed.aan5662.
Dorelli B, Gallè F, De Vito C, et al. Can physical activity influence human gut microbiota composition independently of diet? A systematic review. Nutrients. 2021; 13: 1890. doi: 10.3390/nu13061890.
Gallè F, Valeriani F, Cattaruzza MS, et al. Exploring the association between physical activity and gut microbiota composition: a review of current evidence. Ann Ig. 2019; 31: 582–589. doi: 10.7416/ai.2019.2318.
Aya V, Flórez A, Perez L, et al. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS One 2021; 16: e0247039. doi: 10.1371/journal.pone.0247039.
Divella R, DE Palma G, Tufaro A, et al. Diet, probiotics and physical activity: the right allies for a healthy microbiota. Anticancer Res. 2021; 41: 2759–2772. doi: 10.21873/anticanres.15057.
Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek. 2020; 113: 2019–2040. doi: 10.1007/s10482-020-01474-7.
Rastelli M, Knauf C, Cani PD. Gut microbes and health: a focus on the mechanisms linking microbes, obesity, and related disorders. Obesity (Silver Spring) 2018; 26: 792–800. doi: 10.1002/oby.22175.
Collins KH, Paul HA, Hart DA, et al. A high-fat high-sucrose diet rapidly alters muscle integrity, inflammation and gut microbiota in male rats. Sci Rep. 2016; 6: 37278. doi: 10.1038/srep37278.
Czajkowska A, Szponar B. Krótkołańcuchowe kwasy tłuszczowe (SCFA) jako produkty metabolizmu bakterii jelitowych oraz ich znaczenie dla organizmu gospodarza. Postępy Hig Med. Dośw. 2018; 72: 131–142.
Postler TS, Ghosh S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 2017; 26: 110–130. doi: 10.1016/j.cmet.2017.05.008.
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut microbes. 2016; 7: 189–200. doi: 10.1080/19490976.2015.1134082.
Ticinesi A, Lauretani F, Milani C, et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis? Nutrients. 2017; 9: 1303. doi: 10.3390/nu9121303.
Robertson MD, Bickerton AS, Dennis AL, et al. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr 2005; 82: 559–67, doi: 10.1093/ajcn.82.3.559.
Suriano F, Van Hul M, Cani PD. Gut microbiota and regulation of myokine-adipokine function. Curr Opin Pharmacol 2020; 52: 9–17. doi: 10.1016/j.coph.2020.03.006.
Przewłócka K, Folwarski M, Kaźmierczak-Siedlecka K, et al. Gut-muscle axis exists and may affect skeletal muscle adaptation to training. Nutrients 2020; 12: 1451. doi: 10.3390/nu12051451.
Bindels LB, Delzenne NM. Muscle wasting: the gut microbiota as a new therapeutic target? Int J Biochem Cell Biol. 2013; 45: 2186–90. doi: 10.1016/j.biocel.2013.06.021.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.