PL EN
PRACA PRZEGLĄDOWA
Octy winogronowe – charakterystyka, właściwości oraz bezpieczeństwo stosowania
 
Więcej
Ukryj
1
Zakład Żywienia Człowieka i Metabolomiki, Pomorski Uniwersytet Medyczny, Szczecin, Polska
 
 
Autor do korespondencji
Justyna Antoniewicz   

Zakład Żywienia Człowieka i Metabolomiki, Pomorski Uniwersytet Medyczny, Broniewskiego 24, 71 - 460, Szczecin, Polska
 
 
Med Og Nauk Zdr. 2021;27(4):379-386
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel pracy:
Ocet jest fermentowanym produktem rozpowszechnionym na całym świecie. Stosowany jest przede wszystkim jako przyprawa w celu wzbogacenia smaku dań oraz utrwalenia żywności w postaci marynat. Ocet może jednak stanowić źródło wielu związków o pozytywnym wpływie na organizm człowieka. Celem pracy jest przybliżenie tematyki związanej z różnego rodzaju octami wytworzonymi z owoców winogron oraz ich właściwości zdrowotnych.

Metody przeglądu:
Systematycznego przeglądu badań dokonano na podstawie przeszukiwania elektronicznych baz danych takich jak PubMed, Elsevier oraz Google Scholar.

Opis stanu wiedzy:
Octy owocowe, w tym octy winogronowe, stanowią bogate źródło witamin, związków mineralnych, kwasów organicznych oraz związków polifenolowych, dzięki którym wykazują pozytywne działanie na organizm człowieka. Z racji zawartości związków o działaniu antyoksydacyjnym produkt ten może być stosowany wspomagająco w terapii schorzeń o podłożu wolnorodnikowym, np. chorób układu sercowo-naczyniowego. Skład i jakość produktu finalnego warunkowane są doborem surowca wyjściowego, metodą produkcji, jak i mikroorganizmami biorącymi udział w procesie fermentacji. Octy winogronowe wykazują korzystny wpływ na gospodarkę węglowodanową, obniżając stężenie glukozy na czczo, hemoglobiny A1c, ale również glikemii poposiłkowej. Badania wskazują, że octy winogronowe wpływają również pozytywnie na profil lipidowy, obniżając stężenie cholesterolu całkowitego oraz jego frakcji LDL.

Podsumowanie:
Octy winogronowe są bogatym źródłem wielu związków bioaktywnych, dzięki czemu mogą być stosowane we wspomaganiu terapii niektórych schorzeń, głównie o podłożu wolnorodnikowym. Zawartość poszczególnych związków w octach winogronowych jest silnie zróżnicowana, a na ich kompozycję wpływa zarówno proces produkcji octu, jak i wykorzystana odmiana winogron.

Introduction and objective:
Vinegar is a fermented product that is widespread worldwide. It is used primarily as a seasoning to enrich the taste of dishes and to solidify food in the form of marinades. Vinegar may be the source of many compounds exerting a positive effect on the human body. The aim of the study is to present various types of vinegars produced from grape fruit, as well as their health properties.

Review methods:
A systematic review of research was conducted using electronic databases such as PubMed, Elsevier and Google Scholar.

Brief description of the state of knowledge:
Fruit vinegars are a rich source of vitamins, minerals, organic acids and polyphenolic compounds. The content of these compounds makes vinegars a product with a positive influence on the human organism. Due to the high content of antioxidant compounds, vinegars can be used as adjuncts in the treatment of free radical diseases, such as cardiovascular diseases. The composition and quality of the final product depends on the production method and the microorganisms involved in the fermentation process. Grape vinegars have a beneficial effect on carbohydrate metabolism, reducing the level of fasting glucose and haemoglobin A1c in blood, as well as postprandial glycaemia. Research show that grape vinegars also have a positive effect on the lipid profile by reducing the concentration of total cholesterol and its LDL fraction.

Conclusions:
Grape vinegars are a rich source of many bioactive compounds, therefore, they can be used in the treatment of certain diseases, mainly those related to free radicals. The content of individual compounds in grape vinegars is highly diversified, and their composition is influenced both by the vinegar production process and the grape variety used.
Antoniewicz J, Janda-Milczarek K. Octy winogronowe – charakterystyka, właściwości oraz bezpieczeństwo stosowania. Med Og Nauk Zdr. 2021; 27(4): 379–386. doi: 10.26444/monz/140881
REFERENCJE (106)
1.
Solieri L, Giudici P. Vinegars of the World. In: Solieri L, Giudici P, eds. Vinegars of the World, Mediolan; 2009. p. 1–16.
 
2.
Battcock M, Azam- Ali S. Fermented frutis and vegetables. A global perspective. Table of contents. FAO Agricultural Services Bulletin No. 134. Food and Agriculture Organization of the United Nations, 1998.
 
3.
Adams M. Vinegar. In: Batt C, Tortorello M, eds. Encyclopedia of food microbiology, Amsterdam; 2014. p. 717–722.
 
4.
Callejón RM, Rios- Reina R, Lourdes Morales M, et al. Vinegar. In: Morin J-F, Lees M, eds. Food Integrity Handbook. A guide to food authenticity issues and analytical solutions, Nantes; 2018. p. 273-295.
 
5.
Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 23 grudnia 2014 r. w sprawie znakowania poszczególnych rodzajów środków spożywczych. http://isap.sejm.gov.pl/isap.n... (dostęp 01.07.2021).
 
6.
Garcia- Parilla M, Torija M, Mas A, i wsp. Vinegars and Other Fermented Condiments. In: Frias J, Martinez- Villalenga C, Penas E, eds. Fermented Foods in Health and Disease Prevention. Academic Press; 2017. p. 577–587.
 
7.
Vinegar and substitutes for vinegar from acetic acid (HS: 220900) Product Trade, Exporters and Importers OEC - The Observatory of Economic Complexity. https://oec.world/en/profile/h... (dostęp 2021.02.16).
 
8.
Budak NH, Aykin E, Seydim AC, et al. Functional Properties of Vinegar. J Food Sci. 2014; 79(5): R757–R764. https:// doi:10.1111/1750-3841.12434.
 
9.
Samad A, Azlan A, Ismail A. Therapeutic effects of vinegar: A review. Curr Opin Food Sci. 2016; 8: 56–61. https://doi:10.1016/j.cofs.201....
 
10.
Luzón-Quintana LM, Castro R, Durán-Guerrero E. Biotechnological processes in fruit vinegar production. Foods. 2021; 10(5): 945. https://doi.org/10.3390/foods1....
 
11.
Zhang XL, Zheng Y, Xia ML, et al. Knowledge domain and emerging trends in vinegar research: A bibliometric review of the literature from WOSCC. Foods. 2020; 9(2): 166. https://doi:10.3390/foods90201....
 
12.
Álvarez-Cáliz CM, Santos-Dueñas IM, Jiménez-Hornero JE, et al. Modelling of the Acetification Stage in the Production of Wine Vinegar by Use of Two Serial Bioreactors. Appl Sci. 2020; 10(24): 9064. https://doi:10.3390/APP1024906....
 
13.
Perini M, Paolini M, Simoni M, et al. Stable isotope ratio analysis for verifying the authenticity of balsamic and wine vinegar. J Agric Food Chem. 2014; 62(32): 8197–8203. https://doi:10.1021/jf5013538.
 
14.
Camin F, Bontempo L, Perini M, et al. Control of wine vinegar authenticity through δ18O analysis. Food Control 2013; 29: 107–111. https://doi:10.1016/J.FOODCONT....
 
15.
Vegas C, González Á, Mateo E, et al. Evaluation of representativity of the acetic acid bacteria species identified by culture-dependent method during a traditional wine vinegar production. Food Res Int. 2013; 51(1): 404–411. https://doi: 10.1016/j.foodres.2012.12.055.
 
16.
Na L, Chu X, Jiang S, et al. Vinegar decreases blood pressure by down-regulating AT1R expression via the AMPK/PGC-1α/PPARγ pathway in spontaneously hypertensive rats. Eur J Nutr. 2016; 55(3): 1245–1253. https://doi:10.1007/s00394-015....
 
17.
Balliett M, Burke JR. Changes in anthropometric measurements, body composition, blood pressure, lipid profile, and testosterone in patients participating in a low-energy dietary intervention. J Chiropr Med. 2013; 12(1): 3–14. https://doi:10.1016/j.jcm.2012....
 
18.
Gheflati A, Bashiri R, Ghadiri-Anari A, et al. The effect of apple vinegar consumption on glycemic indices, blood pressure, oxidative stress, and homocysteine in patients with type 2 diabetes and dyslipidemia: A randomized controlled clinical trial. Clin Nutr ESPEN. 2019; 33: 132–138. https://doi: 10.1016/j.clnesp.2019.06.006.
 
19.
Nassiri-Asl M, Hosseinzadeh H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phyther Res. 2016; 30(9): 1392–1403. https://doi:10.1002/ptr.5644.
 
20.
Bouazza A, Bitam A, Amiali M, et al. Effect of fruit vinegars on liver damage and oxidative stress in high-fat-fed rats. Pharm Biol. 2016; 54(2): 260–265.
 
21.
Mohamad NE, Yeap SK, Ky H, et al. Pineapple Vinegar Regulates Obesity-Related Genes and Alters the Gut Microbiota in High-Fat Diet (HFD) C57BL/6 Obese Mice. Evidence-based Complement Altern Med. 2020; 1257962. https://doi:10.1155/2020/12579....
 
22.
Yang JF, Yang CH, Liang MT, et al. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis. Molecules. 2016; 21(9): 1150. https://doi:0.3390/molecules21....
 
23.
Coelho E, Genisheva Z, Oliveira JM, et al. Vinegar production from fruit concentrates: effect on volatile composition and antioxidant activity. J Food Sci Technol. 2017; 54(12): 4112–4122. https://doi:10.1007/s13197-017....
 
24.
Jasbi P, Baker O, Shi X, i wsp. Daily red wine vinegar ingestion for eight weeks improves glucose homeostasis and affects the metabolome but does not reduce adiposity in adults. Food Funct. 2019; 10(11): 7343–7355. https://doi:10.1039/c9fo01082c.
 
25.
Koyama M, Ogasawara Y, Endou K, et al. Fermentation-induced changes in the concentrations of organic acids, amino acids, sugars, and minerals and superoxide dismutase-like activity in tomato vinegar. Int J Food Prop. 2017; 20(4): 888–898. https://doi:10.1080/10942912.2....
 
26.
Eliodório K, Cunha G, Müller C, et al. Advances in yeast alcoholic fermentations for the production of bioethanol, beer and wine. Adv Appl Microbiol. 2019; 109: 61–119. doi:10.1016/BS.AAMBS.2019.10.002.
 
27.
Joyeux A, Lafon-Lafourcade S, Ribereau-Gayon P. Evolution of acetic acidbacteria during fermentation and storage of wine. Appl Environ Microbiol. 1984; 1: 5–20.
 
28.
Gullo M, Verzelloni E, Canonico M. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: Process and biotechnological aspects. Process Biochem. 2014; 49(10): 1571–1579. https://doi:10.1016/j.procbio.....
 
29.
Gomes RJ, de Borges MF, de Rosa MF, et al. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technol Biotechnol. 2018; 56(2): 139–151. https://doi:10.17113/ftb.56.02....
 
30.
Antolak H, Kręgiel D. Bakterie kwasu octowego-taksonomia, ekologia oraz wykorzystanie przemysłowe. Żywn Nauka Technol Jakość. 2015; 4(101): 21–35. doi:10.15193/ZNTJ/2015/101/053.
 
31.
Andrés-Barrao C, Benagli C, Chappuis M, et al. Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. Syst Appl Microbiol. 2013; 36(2): 75–81. https://doi:10.1016/j.syapm.20....
 
32.
Gonzalez A, Guillamon J, Mas A, et al. Application of molecular methods for routine identification of acetic acid bacteria. Int J Food Microbiol. 2006; 108(1): 141–146. https://doi:10.1016/J.IJFOODMI....
 
33.
Gullo M, Caggia C, De Vero L, et al. Characterization of acetic acid bacteria in “traditional balsamic vinegar.” Int J Food Microbiol. 2006; 106(2): 209–212. https://doi:10.1016/J.IJFOODMI....
 
34.
Vegas C, Mateo E, González Á, i wsp. Population dynamics of acetic acid bacteria during traditional wine vinegar production. Int J Food Microbiol. 2010; 138(1–2): 130–136. https://doi: 10.1016/j.ijfoodmicro.2010.01.006.
 
35.
Yetiman AE, Kesmen Z. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques. Int J Food Microbiol. 2015; 204: 9–16. https://doi:10.1016/j.ijfoodmi....
 
36.
Liu Q, Tang G-Y, Zhao C-N, et al. Antioxidant Activities, Phenolic Profiles, and Organic Acid Contents of Fruit Vinegars. Antioxidants. 2019; 8(4): 78. https://doi:10.3390/antiox8040....
 
37.
Sanarico D, Motta S, Bertolini L, et al. HPLC determination of organic acids in traditional balsamic vinegar of Reggio Emilia. J Liq Chromatogr Relat Technol. 2003; 26(13): 2177–2187. https://doi:10.1081/JLC-120022....
 
38.
Bhat S, Akhtar R, Amin T. An Overview on the Biological Production of Vinegar. Int J Fermented Foods. 2014;3(2):139. https://doi:10.5958/2321-712X.....
 
39.
Ozturk I, Caliskan O, Tornuk F, et al. Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT - Food Sci Technol. 2015; 63(1): 144–151. https://doi:10.1016/j.lwt.2015....
 
40.
Codex Alimentarius. Proposed Draft Revised Regional Standard for Vinegar. Codex Alimentarius Commission, FAO/WHO Standards Programme, 2000. http://www.fao.org/tempref/cod... (dostęp 2021.02.10).
 
41.
Rozporządzenie Rady (WE) NR 479/2008 z dnia 29 kwietnia 2008 r. w sprawie wspólnej organizacji rynku wina, zmieniające rozporządzenia (WE) nr 1493/1999, (WE) nr 1782/2003, (WE) nr 1290/2005 i (WE) nr 3/2008 oraz uchylające rozporządzenia (EWG) nr 2392/86 i (WE) nr 1493/1999. https://op.europa.eu/pl/public... (dostęp 01.07.2021).
 
42.
Hailu S, Admassu S, Jha K. Vinegar Production Technology – An Overview. Beverage Food World. 2012: 29–32.
 
43.
Czuba J. Technologia i mikrobiologia fermentacji octowej. Biotechnologia 2003; 3(62): 233–240.
 
44.
Boonsupa W. Chemical properties, antioxidant activities and sensory evaluation of berry vinegar. Walailak J Sci Technol. 2019; 16: 887–896. https://doi:10.48048/wjst.2019....
 
45.
Song N, Cho S, Baik S. Microbial community, and biochemical and physiological properties of Korean traditional black raspberry (Robus coreanus Miquel) vinegar. J Sci Food Agric. 2016; 96(11): 3723–3730. https://doi:10.1002/jsfa.7560.
 
46.
Tesfaye W, Morales ML, García-Parrilla MC, et al. Wine vinegar: Technology, authenticity and quality evaluation. Trends Food Sci Technol. 2002; 13(1): 12–21. https://doi:10.1016/S0924-2244....
 
47.
Molelekoa T, Regnier T, Da Silva L, et al. Potential of marula (Sclerocarya birrea subsp. caffra) waste for the production of vinegar through surface and submerged fermentation. S Afr J Sci. 2018; 114: 11-12. https://doi:10.17159/sajs.2018....
 
48.
Mas A, Torija MJ, García-Parrilla MDC, et al. Acetic acid bacteria and the production and quality of wine vinegar. Sci World J. 2014; 2014(2): 394671. https://doi:10.1155/2014/39467....
 
49.
Hidalgo C, García D, Romero J, et al. Acetobacter strains isolated during the acetification of blueberry (Vaccinium corymbosum L.) wine. Lett Appl Microbiol. 2013; 57: 227–232.https://doi:10.1111/LAM.12104.
 
50.
Sellmer- Wilsberg S. Wine and Grape Vinegars. In: Solieri L, Giudici P, eds. Vinegars of the World, Mediolan; 2009. p. 145–156.
 
51.
Morales ML, Tesfaye W, García-Parrilla M, et al. Evolution of the aroma profile of sherry wine vinegars during an experimental aging in wood. J Agric Food Chem. 2002; 50(11): 3173–3178. https://doi:10.1021/jf011313w.
 
52.
Callejón RM, Tesfaye W, Torija MJ, et al. Volatile compounds in red wine vinegars obtained by submerged and surface acetification in different woods. Food Chem. 2009; 113(4): 1252–1259. https://doi:10.1016/j.foodchem....
 
53.
Torija M-J, Mateo E, Vegas C, et al. Effect of wood type and thickness on acetification kinetics in traditional vinegar production. Int J Wine Res. 2009; 1:155- 160.
 
54.
Durán Guerrero E, Mejías RC, Marín RN, et al. Accelerated aging of a Sherry wine vinegar on an industrial scale employing microoxygenation and oak chips. Eur Food Res Technol. 2011; 232(2): 241–254. https://doi:10.1007/s00217-010....
 
55.
Vinegar market in the EU increases for the third consecutive year, reaching $871M. https://www.globaltrademag.com... (dostęp 04.07.2021).
 
56.
De Ory I, Romero LE, Cantero D. Modelling the kinetics of growth of Acetobacter aceti in discontinuous culture: Influence of the temperature of operation. Appl Microbiol Biotechnol. 1998; 49: 189–193. https://doi:10.1007/s002530051....
 
57.
Moonmangmee D, Adachi O, Ano Y, et al. Isolation and characterization of thermotolerant gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Biosci Biotechnol Biochem. 2000; 64(11): 2306–2315. https://doi:10.1271/bbb.64.230....
 
58.
Rozporządzenie Komisji (WE) nr 583/2009 z dnia 3 lipca 2009 r. rejestrujące nazwę w rejestrze chronionych nazw pochodzenia i chronionych oznaczeń geograficznych (Aceto Balsamico di Modena (ChOG)). https://eur-lex.europa.eu/lega... (dostęp 01.07.2021).
 
59.
Rozporządzenie wykonawcze Komisji (UE) nr 985/2011 z dnia 30 września 2011 r. rejestrujące w rejestrze chronionych nazw pochodzenia i chronionych oznaczeń geograficznych nazwę [Vinagre de Jerez (CHNP)]. https://eur-lex.europa.eu/lega... (dostęp 30.06.2021).
 
60.
Rozporządzenie wykonawcze Komisji (UE) 2015/48 z dnia 14 stycznia 2015 r. rejestrujące w rejestrze chronionych nazw pochodzenia i chronionych oznaczeń geograficznych nazwę [Vinagre de Montilla-Moriles (ChNP)] https://eur-lex.europa.eu/lega... (dostęp 28.06.2021).
 
61.
Rozporządzenie wykonawcze Komisji (UE) 2021/243 z dnia 11 lutego 2021 r. zatwierdzające inną niż nieznaczna zmianę w specyfikacji nazwy zarejestrowanej w rejestrze chronionych nazw pochodzenia i chronionych oznaczeń geograficznych „Vinagre del Condado de Huelva” (ChNP). https://eur-lex.europa.eu/lega... (dostęp 30.06.2021).
 
62.
Ríos-Reina R, Elcoroaristizabal S, Ocaña-González J, et al. Characterization and authentication of Spanish PDO wine vinegars using multidimensional fluorescence and chemometrics. Food Chem. 2017; 230: 108–116. https://doi:10.1016/j.foodchem....
 
63.
Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017; 128: 40–50. https://doi:10.1016/j.diabres.....
 
64.
Schmidt AM. Highlighting Diabetes Mellitus. Arterioscler Thromb Vasc Biol. 2018; 38(1): 1–8. https://doi:10.1161/ATVBAHA.11....
 
65.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013; 36(SUPPL.1): S67. https://doi:10.2337/dc13-S067.
 
66.
Santos HO, de Moraes WM, da Silva GA, et al. Vinegar (acetic acid) intake on glucose metabolism: A narrative review. Clin Nutr ESPEN. 2019; 32: 1–7. https://doi:10.1016/j.clnesp.2....
 
67.
Mitrou P, Petsiou E, Papakonstantinou E, et al. Vinegar Consumption Increases Insulin-Stimulated Glucose Uptake by the Forearm Muscle in Humans with Type 2 Diabetes. J Diabetes Res. 2015; 2015: 175204. https://doi:10.2337/dc09-1354.
 
68.
Cheng LJ, Jiang Y, Wu VX, et al. A systematic review and meta-analysis: Vinegar consumption on glycaemic control in adults with type 2 diabetes mellitus. J Adv Nurs. 2020; 76(2): 459–474. https://doi:10.1111/jan.14255.
 
69.
Liatis S, Grammatikou S, Poulia KA, et al. Vinegar reduces postprandial hyperglycaemia in patients with type II diabetes when added to a high, but not to a low, glycaemic index meal. Eur J Clin Nutr. 2010; 64(7): 727–732. https://doi:10.1038/ejcn.2010.....
 
70.
Kahraman KN, Mesci B, Oguz A, et al. The effect of vinegar on postprandial glycemia: Does the amount matter? Acta Endocrinol (Copenh). 2011; 7(4): 577–584. https://doi:10.4183/aeb.2011.5....
 
71.
Johnston CS, Steplewska I, Long CA, et al. Examination of the antiglycemic properties of vinegar in healthy adults. Ann Nutr Metab. 2010; 56(1): 74–79. https://doi:10.1159/000272133.
 
72.
Yamashita H. Biological Function of Acetic Acid–Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats. Crit Rev Food Sci Nutr. 2016; 56: 171–175. https://doi:10.1080/10408398.2....
 
73.
Östman E, Granfeldt Y, Persson L, et al. Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur J Clin Nutr. 2005; 59(9): 983–988. https://doi:10.1038/sj.ejcn.16....
 
74.
Shishehbor F, Mansoori A, Shirani F. Vinegar consumption can attenuate postprandial glucose and insulin responses; a systematic review and meta-analysis of clinical trials. Diabetes Res Clin Pract. 2017; 127: 1–9. https://doi:10.1016/j.diabres.....
 
75.
Jakubczyk K, Dec K, Kałduńska J, et al. Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lek. 2020; 48(284): 124–127.
 
76.
El-Bahr SM. Biochemistry of Free Radicals and Oxidative Stress. Sci Int. 2013; 1(5): 111–117. https://doi:10.5567/sciintl.20....
 
77.
Sharma N. Free Radicals, Antioxidants and Disease. Biol Med. 2014; 6(3): 1000214. https://doi:10.4172/0974-8369.....
 
78.
Chikara S, Nagaprashantha LD, Singhal J, et al. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett. 2018; 413: 122–134. https://doi:10.1016/j.canlet.2....
 
79.
Ichiishi E, Li,X-K, Iorio EL. Oxidative stress and diseases: clinical trials and approaches. Oxid Med Cell Longev. 2016; 2016: 3458276. https://doi:10.1155/2016/34582....
 
80.
Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013; 7(5): e330-41. https://doi:10.1016/j.orcp.201....
 
81.
Santos- Sanchez N, Salas- Coronado R, Villanueva- Canongo C, et al. Antioxidant Compounds and Their Antioxidant Mechanism. In: Shalaby E, ed. Antioxidants, Londyn; 2019. p. 23–51.
 
82.
Álvarez R, Araya H, Navarro-Lisboa R, et al. Evaluation of Polyphenols and Antioxidant Capacity of Fruits and Vegetables Using a Modified Enzymatic Extraction Method. Food Technol Biotechnol. 2016; 54(4): 462. https://doi:10.17113/ftb.54.04....
 
83.
Bakir S, Toydemir G, Boyacioglu D, et al. Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility. Int J Mol Sci. 2016; 17(10): 1658. https://doi:10.3390/ijms171016....
 
84.
Pizarro C, Esteban-Díez I, Sáenz-González C, et al. Vinegar classification based on feature extraction and selection from headspace solid-phase microextraction/gas chromatography volatile analyses: A feasibility study. Anal Chim Acta. 2008; 608(1): 38–47. https://doi:10.1016/J.ACA.2007....
 
85.
Budak HN, Guzel-Seydim ZB. Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. J Sci Food Agric. 2010; 90(12): 2021–2026. https://doi:10.1002/jsfa.4047.
 
86.
Schlepütz T, Gerhards JP, Büchs J. Ensuring constant oxygen supply during inoculation is essential to obtain reproducible results with obligatory aerobic acetic acid bacteria in vinegar production. Process Biochem. 2013; 48,(3): 398–405. https://doi:10.1016/j.procbio.....
 
87.
Jordão AM, Simoes S, Correia AC, et al. Antioxidant activity evolution during Portuguese red wine vinification and their relation with the proanthocyanidin and anthocyanin composition. J Food Process Preserv. 2012; 36(4): 298–309. https://doi:10.1111/j.1745-454....
 
88.
Cerezo A, Álvarez-Fernández M, Hornedo-Ortega R, et al. Phenolic composition of vinegars over an accelerated aging process using different wood species (Acacia, Cherry, Chestnut, and Oak): Effect of wood toasting. J Agric Food Chem 2014; 62(19): 4369–4376. https://doi:10.1021/jf500654d.
 
89.
Ubeda C, Callejón RM, Hidalgo C, et al. Employment of different processes for the production of strawberry vinegars: Effects on antioxidant activity, total phenols and monomeric anthocyanins. LWT - Food Sci Technol. 2013; 52 (2): 139–145. https://doi:10.1016/j.lwt.2012....
 
90.
Alonso ÁM, Castro R, Rodríguez MC, et al. Study of the antioxidant power of brandies and vinegars derived from Sherry wines and correlation with their content in polyphenols. Food Res Int. 2004; 37(7): 715–721. https://doi:10.1016/j.foodres.....
 
91.
Neffe- Skocińska K, Wójtowicz M, Dąbrowski M, i wsp. Bakterie kwasu octowego jako potencjalne probiotyki nowej generacji. Żywność Nauk Technol Jakość. 2020; 27(3), 15–27.
 
92.
Plessi M, Bertelli D, Miglietta F. Extraction and identification by GC-MS of phenolic acids in traditional balsamic vinegar from Modena. J Food Compos Anal. 2006; 19(1): 49–54. https://doi: 10.1016/j.jfca.2004.10.008.
 
93.
Chong J, Poutaraud A, Hugueney P. Metabolism and roles of stilbenes in plants. Plant Sci. 2009; 177(3): 143–155. https://doi:10.1016/j.plantsci....
 
94.
Spáčil Z, Nováková L, Solich P. Analysis of phenolic compounds by high performance liquid chromatography and ultra performance liquid chromatography. Talanta. 2008; 76(1): 189–199. https://doi:10.1016/j.talanta.....
 
95.
Cantos E, Espín JC, Tomás-Barberán FA. Varietal Differences among the Polyphenol Profiles of Seven Table Grape Cultivars Studied by LC−DAD−MS−MS. J Agric Food Chem. 2002; 50(20): 5691–5696. https://doi:10.1021/jf0204102.
 
96.
Giovinazzo G, Grieco F. Functional Properties of Grape and Wine Polyphenols. Plant Foods Hum Nutr. 2015; 70(4): 454–462. https://doi:10.1007/s11130-015....
 
97.
Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, et al. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J Agric Food Chem. 2007; 55(3): 992–1002. https://doi:10.1021/jf062800k.
 
98.
Mattivi F, Zulian C, Nicolini G, et al. Wine, biodiversity, technology, and antioxidants. Ann N Y Acad Sci. 2002; 957: 37–56. https://doi: 10.1111/j.1749-6632.2002.tb02904.x.
 
99.
Cruz M, Correia A, Gonçalves F, et al. Phenolic composition and total antioxidant capacity analysis of red wine vinegars commercialized in Portuguese market. Ciência Téc Vitiv. 2018; 33(2): 102- 105. https://doi:10.1051/ctv/201833....
 
100.
Bakir S, Devecioglu D, Kayacan S, et al. Investigating the antioxidant and antimicrobial activities of different vinegars. Eur. Food Res. Technol. 2017; 243: 2083–2094. https://doi:10.1007/s00217-017....
 
101.
Kadiroğlu P. FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics. J Sci Food Agric. 2018; 98(11): 4121–4127. https://doi:10.1002/jsfa.8929.
 
102.
Launholt T, Kristiansen C, Hjorth P. Safety and side effects of apple vinegar intake and its effect on metabolic parameters and body weight: a systematic review. Eur J Nutr. 2020; 59(6): 2273–2289, https://doi:10.1007/s00394-020....
 
103.
Gambon DL, Brand H, Veerman E. Unhealthy weight loss. Erosion by apple cider vinegar. Ned Tijdschr Tandheelkd. 2012; 119(12): 589–591, https://doi:10.5177/ntvt.2012.....
 
104.
Johnston CS, White AM, Kent SM. A Preliminary Evaluation of the Safety and Tolerance of Medicinally Ingested Vinegar in Individuals with Type 2 Diabetes. J Med Food. 2008; 11(1): 179–183. https://doi:10.1089/jmf.2007.5.....
 
105.
Lhotta K, Höfle G, Gasser R, et al. Hypokalemia, Hyperreninemia and Osteoporosis in a Patient Ingesting Large Amounts of Cider Vinegar. Nephron. 1998; 80(2): 242–243. https://doi:10.1159/000045180.
 
106.
Mitrou P, Raptis AE, Lambadiari V, et al. Vinegar decreases postprandial hyperglycemia in patients with type 1 diabetes. Diabetes Care. 2010; 33(2):e27. https://doi:10.2337/dc09-1354.
 
eISSN:2084-4905
ISSN:2083-4543
Journals System - logo
Scroll to top