REVIEW PAPER
New trends in ophthalmology – a literature review
More details
Hide details
1
Uczelnia Łazarskiego, Wydział Medyczny, Polska
2
Uniwersytet Kardynała Stefana Wyszyńskiego, Wydział Medyczny-Collegium Medicum, Katedra Okulistyki, Polska
3
Centrum Medyczne Kształcenia Podyplomowego, Szkoła Zdrowia Publicznego, Zakład Zdrowia Populacyjnego, Polska
Corresponding author
Olga Adamska
Uniwersytetu Kardynała Stefana Wyszyńskiego, Wydział Medyczny-Collegium Medicum, Zakład Okulistyki, Warszawa, Polska
Med Og Nauk Zdr. 2024;30(1):34-40
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
The 21st century stimulates to bring novel solutions to initiate more effective results. Artificial
intelligence, the Internet of Things, robots, etc. are a part of medicine that relieves physicians at work and supports the patient’s diagnostic-therapeutic process. The article aims to present the use of new techniques in the field of diagnostics and treatment in clinical ophthalmology.
Review methods:
The PubMed/Medline and Google Scholar databases were reviewed to identify publications on the use of new technologies in clinical ophthalmology. The analysis included publications in English and Polish published in 2012–2023. A combination of the following keywords wasused: ‘telemedicine’, ‘ophthalmology’, ‘teleophthalmology’, ‘screening for diabetic retinopathy’, ‘artificial intelligence’, and ‘artificial intelligence in ophthalmology’.
Brief description of the state of knowledge:
From a total of 152 articles identified, 28 were included in the review. New technologies were mainly used in the clinical management of patients diagnosed with retinopathy of prematurity, diabetic retinopathy, glaucoma, age-related macular degeneration, and cataracts. The implemented solutions were based on technologies in the field of artificial intelligence, machine learning, analysis of large data sets, Internet of Things, remote patient monitoring, telediagnostics, and robotic surgery. The implementation concerned the treatment of retinopathy, glaucoma, age-related macular degeneration, and cataracts.
Summary:
The use of new techniques creates broad prospects for the development of services provided by ophthalmologists and better allocation of medical staff. The implementation of new digital technologies allows the reduction of waiting time for services and provide access to ophthalmological care to more patients.
REFERENCES (62)
1.
Senbekov M, Saliev T, Bukeyeva Z, et al. The Recent Progress and Applications of Digital Technologies in Healthcare: A Review. Int J Telemed Appl. 2020;2020:8830200. doi:10.1155/2020/8830200.
2.
Redd TK, Al-Khaled T, Paul Chan RV, et al. Technology and Innovation in Global Ophthalmology: The Past, the Potential, and a Path Forward. Int Ophthalmol Clin. 2023;63(1):25–32. doi:10.1097/IIO.0000000000000450.
3.
Bajwa J, Munir U, Nori A, et al. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021;8(2):e188-e194. doi:10.7861/fhj.2021-0095.
4.
Lu ZX, Qian P, Bi D, et al. Application of AI and IoT in Clinical Medicine: Summary and Challenges. Curr Med Sci. 2021;41(6):1134–1150. doi:10.1007/s11596-021-2486-z.
5.
Hong Z, Li N, Li D, et al. Telemedicine During the COVID-19 Pandemic: Experiences From Western China. J Med Internet Res. 2020;22(5):e19577. doi:10.2196/19577.
6.
Perera MS. Halgamuge MN, Samarakody R, et al. Internet of Things in Healthcare: A Survey of Telemedicine Systems Used for Elderly People. 2021:1;21(1):933. Springer, Singapore. doi:10.1007/978-981-15-9897-5_4.
7.
Ghebreyesus TA. „World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 – 25 May 2020.” (2020).
8.
WHO guideline Recommendations on Digital Interventions for Health System Strengthening. Geneva: World Health Organization; 2019.
9.
Dia M, Davoudi S, Sanayei N, et al. Demographic and socioeconomic disparities in the hybrid ophthalmology telemedicine model. J Telemed Telecare. 2023:1357633X231211353. doi:10.1177/1357633X231211353.
10.
Li L, Jin Y, Wang JH, et al. Potency of teleophthalmology as a detection tool for diabetic retinopathy. Sci Rep. 2023;13(1):19620. doi:10.1038/s41598-023-46554-6.
11.
Bonilla-Escobar FJ, Sánchez-Cano D, Lasave AF, et al. Early-Phase Perceptions of COVID-19's Impact on Ophthalmology Practice Patterns: A Survey from the Pan-American Association of Ophthalmology. Clin Ophthalmol. 2023;17:3249–3259. doi:10.2147/OPTH.S434776.
13.
Ittoop SM, SooHoo JR, Seibold LK, et al. Systematic Review of Current Devices for 24-h Intraocular Pressure Monitoring. Adv Ther. 2016;33(10):1679–1690. doi:10.1007/s12325-016-0388-4.
14.
Anderson AJ, Bedggood PA, George Kong YX, et al. Can Home Monitoring Allow Earlier Detection of Rapid Visual Field Progression in Glaucoma? Ophthalmology. 2017;124(12):1735–1742. doi:10.1016/j.ophtha.2017.06.028.
15.
Wisse RPL, Muijzer MB, Cassano F, et al. Validation of an Independent Web-Based Tool for Measuring Visual Acuity and Refractive Error (the Manifest versus Online Refractive Evaluation Trial): Prospective Open-Label Noninferiority Clinical Trial. J Med Internet Res. 2019;21(11):e14808. doi:10.2196/14808.
16.
Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1:39. doi:10.1038/s41746-018-0040-6.
17.
Masumoto H, Tabuchi H, Nakakura S, et al. Deep-learning Classifier With an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity. J Glaucoma. 2018;27(7):647–652. doi:10.1097/IJG.0000000000000988. PMID: 29781835.
18.
Liu H, Li L, Wormstone IM, et al. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. JAMA Ophthalmol. 2019;137(12):1353–1360. doi:10.1001/jamaophthalmol.2019.3501.
19.
Asaoka R, Murata H, Iwase A, et al. Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier. Ophthalmology. 2016;123(9):1974–80. doi:10.1016/j.ophtha.2016.05.029.
20.
Burlina PM, Joshi N, Pekala M, et al. Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2017;135(11):1170–1176. doi:10.1001/jamaophthalmol.2017.3782.
21.
Brown JM, Campbell JP, Beers A, et al. Imaging and Informatics in Retinopathy of Prematurity (i-ROP) Research Consortium. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2018;136(7):803–810. doi:10.1001/jamaophthalmol.2018.1934.
22.
Balyen L, Peto T. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Asia Pac J Ophthalmol (Phila). 2019;8(3):264–272. doi:10.22608/APO.2018479.
23.
Deemer AD, Bradley CK, Ross NC, et al. Low Vision Enhancement with Head-mounted Video Display Systems: Are We There Yet? Optom Vis Sci. 2018;95(9):694–703. doi:10.1097/OPX.0000000000001278.
24.
Loewenstein A, Malach R, Goldstein M, et al. Replacing the Amsler grid: a new method for monitoring patients with age-related macular degeneration. Ophthalmology. 2003;110(5):966–70. doi:10.1016/S0161-6420(03)00074-5.
25.
Kaiser PK, Wang YZ, He YG, et al. Feasibility of a novel remote daily monitoring system for age-related macular degeneration using mobile handheld devices: results of a pilot study. Retina. 2013;33(9):1863–70. doi:10.1097/IAE.0b013e3182899258.
26.
Schmid MK, Faes L, Bachmann LM, et al. Accuracy of a Self-monitoring Test for Identification and Monitoring of Age-related Macular Degeneration: A Diagnostic Case-control Study. Open Ophthalmol J. 2018;12:19–28. doi:10.2174/1874364101812010019.
27.
Eckardt C, Paulo EB. HEADS-UP SURGERY FOR VITREORETINAL PROCEDURES: An Experimental and Clinical Study. Retina. 2016;36(1):137–47. doi:10.1097/IAE.0000000000000689.
28.
World Health Organization.World report on vision. Geneva: World Health Organization; 2019.
29.
Rooney MR, Fang M, Ogurtsova K, et al. Global Prevalence of Prediabetes. Diabetes Care. 2023;46(7):1388–1394. doi:10.2337/dc22-2376.
30.
Sreelatha OK, Ramesh SV. Teleophthalmology: improving patient outcomes? Clin Ophthalmol. 2016;10:285–95. doi:10.2147/OPTH.S80487.
31.
Chan RV, Patel SN, Ryan MC, et al. The Global Education Network for Retinopathy of Prematurity (Gen-Rop): Development, Implementation, and Evaluation of A Novel Tele-Education System (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc. 2015;113:T2.
32.
Scotland GS, McNamee P, Fleming AD, et al. Scottish Diabetic Retinopathy Clinical Research Network. Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy. Br J Ophthalmol. 2010;94(6):712–9. doi:10.1136/bjo.2008.151126.
33.
Nguyen HV, Tan GS, Tapp RJ, et al. Cost-effectiveness of a National Telemedicine Diabetic Retinopathy Screening Program in Singapore. Ophthalmology. 2016;123(12):2571–2580. doi:10.1016/j.ophtha.2016.08.021.
34.
Salongcay RP, Silva PS. The Role of Teleophthalmology in the Management of Diabetic Retinopathy. Asia Pac J Ophthalmol (Phila). 2018;7(1):17–21. doi:10.22608/APO.2017479.
35.
Horton MB, Brady CJ, Cavallerano J, et al. Practice Guidelines for Ocular Telehealth-Diabetic Retinopathy, Third Edition. Telemed JE Health. 2020;26(4):495–543. doi:10.1089/tmj.2020.0006.
36.
Schwartz SD, Harrison SA, Ferrone PJ, et al. Telemedical evaluation and management of retinopathy of prematurity using a fiberoptic digital fundus camera. Ophthalmology. 2000;107(1):25–8. doi:10.1016/s0161-6420(99)00003-2.
37.
Dhaliwal C, Wright E, Graham C, et al. Wide-field digital retinal imaging versus binocular indirect ophthalmoscopy for retinopathy of prematurity screening: a two-observer prospective, randomised comparison. Br J Ophthalmol. 2009;93(3):355–9. doi:10.1136/bjo.2008.
38.
Fijalkowski N, Zheng LL, Henderson MT, et al. Stanford University Network for Diagnosis of Retinopathy of Prematurity (SUNDROP): five years of screening with telemedicine. Ophthalmic Surg Lasers Imaging Retina. 2014;45(2):106–13. doi:10.3928/23258160-20140122-01.
39.
Campbell JP, Ataer-Cansizoglu E, Bolon-Canedo V, et al. Imaging and Informatics in ROP (i-ROP) Research Consortium. Expert Diagnosis of Plus Disease in Retinopathy of Prematurity From Computer-Based Image Analysis. JAMA Ophthalmol. 2016;134(6):651–7. doi:10.1001/jamaophthalmol.2016.0611.
40.
Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90. doi:10.1016/j.ophtha.2014.05.013.
41.
Stevens GA, White RA, Flaxman SR, et al. Vision Loss Expert Group. Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990–2010. Ophthalmology. 2013;120(12):2377–2384. doi:10.1016/j.ophtha.2013.05.025.
42.
Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–91. doi:10.1016/j.ophtha.2014.05.013.
43.
Tatham AJ, Medeiros FA, Zangwill LM, et al. Strategies to improve early diagnosis in glaucoma. Prog Brain Res. 2015;221:103–33. doi:10.1016/bs.pbr.2015.03.001.
44.
Jonas JB, Wu SL, Wang Yx, et al. Diabetic retinopathy in China: population-based studies and clinical and experimental investigations. The Lancet. 2017;390(4):S30. doi:10.1016/S0140-6736(17)33168-9.
45.
Thomas SM, Jeyaraman MM, Hodge WG, et al. The effectiveness of teleglaucoma versus in-patient examination for glaucoma screening: a systematic review and meta-analysis. Plos one. 2014;9(12):e113779. doi:10.1371/journal.pone.0113779.
46.
Arora S, Rudnisky CJ, Damji KF. Improved access and cycle time with an „in-house” patient-centered teleglaucoma program versus traditional in-person assessment. Telemed JE Health. 2014;20(5):439–45. doi:10.1089/tmj.2013.0241.
47.
Wright HR, Diamond JP. Service innovation in glaucoma management: using a Web-based electronic patient record to facilitate virtual specialist supervision of a shared care glaucoma programme. Br J Ophthalmol. 2015;99(3):313–7. doi:10.1136/bjophthalmol-2014-305588.
48.
Kotecha A, Baldwin A, Brookes J, et al. Experiences with developing and implementing a virtual clinic for glaucoma care in an NHS setting. Clin Ophthalmol. 2015;9:1915–23. doi:10.2147/OPTH.S92409.
49.
Clarke J, Puertas R, Kotecha A, et al. Virtual clinics in glaucoma care: face-to-face versus remote decision-making. Br J Ophthalmol. 2017;101(7):892–895. doi:10.1136/bjophthalmol-2016-308993.
50.
Rosa JGS, Disner GR, Pinto FJ, et al. Revisiting Retinal Degeneration Hallmarks: Insights from Molecular Markers and Therapy Perspectives. Int J Mol Sci. 2023;24(17):13079. doi:10.3390/ijms241713079.
51.
Rein DB, Wittenborn JS, Burke-Conte Z, et al. Prevalence of Age-Related Macular Degeneration in the US in 2019. JAMA Ophthalmol. 2022;140(12):1202–1208. doi:10.1001/jamaophthalmol.2022.4401.
52.
Kido A, Miyake M, Tamura H, et al. Incidence and Clinical Practice of Exudative Age-related Macular Degeneration: A Nationwide Population-Based Cohort Study. Ophthalmol Sci. 2022;2(2):100125. doi:10.1016/j.xops.2022.100125.
53.
Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1432–44. doi:10.1056/NEJMoa062655.
54.
Blodi BA, Domalpally A, Corkery E, et al. Prevalence of Macular Atrophy in the MARINA Study of Ranibizumab versus Sham for Neovascular Age-Related Macular Degeneration. Ophthalmol Retina. 2023;7(8):661–671. doi:10.1016/j.oret.2023.03.004.
55.
Moir J, Hyman MJ, Wang J, et al. Associations Between Autoimmune Disease and the Development of Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2023;64(15):45. doi:10.1167/iovs.64.15.45.
56.
Bakri SJ, Thorne JE, Ho AC, et al. Safety and Efficacy of Anti-Vascular Endothelial Growth Factor Therapies for Neovascular Age-Related Macular Degeneration: A Report by the American Academy of Ophthalmology. Ophthalmology. 2019;126(1):55–63. doi:10.1016/j.ophtha.2018.07.028.
57.
Kawaguchi A, Sharafeldin N, Sundaram A, et al. Tele-Ophthalmology for Age-Related Macular Degeneration and Diabetic Retinopathy Screening: A Systematic Review and Meta-Analysis. Telemed JE Health. 2018;24(4):301–308. doi:10.1089/tmj.2017.0100.
58.
Shih KC, Wong JKW, Lian JX, et al. Diagnostic accuracy of tele-ophthalmology versus face-to-face consultation: abridged secondary publication. Hong Kong Med J. 2023;29 Suppl 1(1):18–21.
59.
Amsler M. L'Examen qualitatif de la function maculaire. Ophthalmologica. 1947;114:248–261.
60.
Kalinowska A, Nowomiejska K, Brzozowska A, et al. Metamorphopsia Score and Central Visual Field Outcomes in Diabetic Cystoid Macular Edema. Biomed Res Int. 2018;2018:4954532. doi:10.1155/2018/4954532.
61.
Faura G, Boix-Lemonche G, Holmeide AK, et al. Colorimetric and Electrochemical Screening for Early Detection of Diabetes Mellitus and Diabetic Retinopathy-Application of Sensor Arrays and Machine Learning. Sensors (Basel). 2022;22(3):718. doi:10.3390/s22030718.
62.
Chew EY, Clemons TE, Harrington M, et al. EFFECTIVENESS OF DIFFERENT MONITORING MODALITIES IN THE DETECTION OF NEOVASCULAR AGE-RELATED MACULAR DEGENERATION: The Home Study, Report Number 3. Retina. 2016;36(8):1542–7. doi:10.1097/IAE.0000000000000940.