PRACA ORYGINALNA
Ocena wyprostu stawu kolanowego u pacjentów z uszkodzonym więzadłem krzyżowym przednim
Więcej
Ukryj
1
Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
2
Association of Neurophysiological-Orthopaedic Manipulative Physical Therapists, Katowice, Poland
3
Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
4
Student’s Scientific Association at The Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
Autor do korespondencji
Jakub Sojat
Faculty of Health
Sciences in Katowice, Medical University of Silesia, Katowice, Poland; Association of Neurophysiological-Orthopaedic Manipulative Physical Therapists, Medyków 18, 40-752 Katowice, Poland
Med Og Nauk Zdr. 2023;29(4):293-298
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel pracy:
Powszechnie uważa się, że po urazie więzadła krzyżowego przedniego (ACL) występuje
ograniczenie ruchomości stawu kolanowego. Jest wiele przyczyn ograniczenia ruchu, m.in. opuchlizna, ból pourazowy, jednakże w literaturze brakuje prac przedstawiających zjawisko, którym jest deficyt wyprostu stawu kolanowego po urazie ACL. Celem pracy było porównanie zakresu ruchu wyprostu stawu kolanowego między kończynami dolnymi u pacjentów po uszkodzeniu więzadła krzyżowego przedniego.
Materiał i metody:
Badanie zostało przeprowadzone w grupie 44 pacjentów z uszkodzonym ACL (nieoperowanym). Diagnoza
została oparta na wynikach testów funkcjonalnych: testu Lachmanna; testu pivot shift oraz testu szuflady przedniej. Ponadto w obrazie rezonansu magnetycznego musiało być potwierdzone uszkodzenie ACL. Dodatkowo uszkodzenie ACL musiało być potwierdzone w opisie przygotowywanym przez lekarza specjalistę radiologii. Zakres wyprostu mierzono zarówno pasywnie, jak i aktywnie za pomocą inklinometru Saundersa.
Wyniki:
Kończyna z uszkodzonym ACL ma mniejszy zakres wyprostu w porównaniu do kończyny zdrowej. (Aktywny zakres wyprostu p = 0,0012; bierny zakres wyprostu p = 0,0122).
Wnioski:
Leczenie zorientowane na poprawę zakresu ruchomości wydaje się odpowiednie w powrocie do pełnej
sprawności funkcjonalnej pacjentów z uszkodzeniem ACL. U pacjentów po uszkodzeniu ACL zawsze należy badać zakres wyprostu zarówno w formie czynnej, jak i biernej.
Introduction and objective:
A common belief is that after an anterior cruciate ligament (ACL) injury, there is a deficit knee
range of motion (ROM). Deficit ROM can be caused by swelling, postoperative or postinjury pain. However, in the literature there is a lack of papers proving that there is a deficit of knee
joint extension ROM after ACL injury. The aim of the study was to compare the knee joint extension range between the healthy limb and the limb with an anterior cruciate ligament (ACL) injury.
Material and methods:
The study was performed on a group of 44 patients aged 18–46 years with ACL injury
(non-operative). The diagnosis was made on the basis of functional tests: Lachman test, pivot shift test, anterior drawer test, confirmed by MRI examination. ACL damage was also diagnosed in the MRI report by a radiologist. A Saunders inclinometer was used to measure passive and active knee extension.
Results:
There was a significant difference in the measurements of knee extension between a healthy limb and a limb with an ACL injury (active extension p=0.0012; passive extension p=0.0122).
Conclusions:
The limb with ACL injury had a lower range of extension in comparison to the healthy limb. Therefore, treatment focusing on improving the range of extension seems to be beneficial in patients’ recovery. It is important to examine both the active and passive knee extension range of motion after ACL damaged.
Sojat J, Szlęzak M, Wasiuk-Zowada D, Paździora K, Likus W. Knee extension among patients with damaged anterior cruciate ligament. Med
Og Nauk Zdr. 2023; 293–298. doi: 10.26444/monz/174215
REFERENCJE (36)
1.
Magnussen R, Reinke EK, Huston LJ, et al. Anterior and Rotational Knee Laxity Does Not Affect Patient-Reported Knee Function 2 Years After Anterior Cruciate Ligament Reconstruction. Am J Sports Med. 2019;47(9):2077–2085. doi:10.1177/0363546519857076.
2.
Laboute E, Verhaeghe E, Ucay O, Minden A. Evaluation kinaesthetic proprioceptive deficit after knee anterior cruciate ligament (ACL) reconstruction in athletes. J Exp Orthop. 2019;6(1):6. doi:10.1186/s40634-019-0174-8.
3.
Sugimoto D, Heyworth BE, Yates BA, Kramer DE, Kocher MS, Micheli LJ. Effect of Graft Type on Thigh Circumference, Knee Range of Motion, and Lower-Extremity Strength in Pediatric and Adolescent Males Following Anterior Cruciate Ligament Reconstruction. J Sport Rehabil. 2019;29(5):555–562. doi:10.1123/jsr.2018-0272.
4.
Schreiber VM, Jordan SS, Bonci GA, Irrgang JJ, Fu FH. The evolution of primary double-bundle ACL reconstruction and recovery of early post-operative range of motion. Knee Surg Sports Traumatol Arthrosc. 2017;25(5):1475–1481. doi:10.1007/s00167-016-4347-z.
5.
Kuszewski MT, Gnat R, Szlachta G, Kaczyńska M, Knapik A. Passive stiffness of the hamstrings and the rectus femoris in persons after an ACL reconstruction. Phys Sportsmed. 2019;47(1):91–95. doi:10.1080/00913847.2018.1527171.
6.
Filbay SR, Grindem H. Evidence-based recommendations for the management of anterior cruciate ligament (ACL) rupture. Best Pract Res Clin Rheumatol. 2019;33(1):33–47. doi:10.1016/j.berh.2019.01.018.
7.
Musahl V, Engler ID, Nazzal EM, Dalton JF, Lucidi GA, Hughes JD, Zaffagnini S, Della Villa F, Irrgang JJ, Fu FH, Karlsson J. Current trends in the anterior cruciate ligament part II: evaluation, surgical technique, prevention, and rehabilitation. Knee Surg Sports Traumatol Arthrosc. 2022;30(1):34–51. doi:10.1007/s00167-021-06825-z.
8.
Baxter T, Majumdar A, Heyworth BE. Anterior Cruciate Ligament Reconstruction Procedures Using the Iliotibial Band Autograft. Clin Sports Med. 2022;41(4):549–567. doi: 10.1016/j.csm.2022.05.001.
9.
Kunze KN, Manzi J, Richardson M, White AE, Coladonato C, DePhillipo NN, LaPrade RF, Chahla J. Combined Anterolateral and Anterior Cruciate Ligament Reconstruction Improves Pivot Shift Compared With Isolated Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arthroscopy. 2021;37(8):2677–2703. doi:10.1016/j.arthro.2021.03.058.
10.
Glattke KE, Tummala SV, Chhabra A. Anterior Cruciate Ligament Reconstruction Recovery and Rehabilitation: A Systematic Review. J Bone Joint Surg Am. 2022;104(8):739–754. doi:10.2106/JBJS.21.00688.
11.
Kotsifaki R, Korakakis V, King E, Barbosa O, Maree D, Pantouveris M, Bjerregaard A, Luomajoki J, Wilhelmsen J, Whiteley R. Aspetar clinical practice guideline on rehabilitation after anterior cruciate ligament reconstruction. Br J Sports Med. 2023;57(9):500–514. doi:10.1136/bjsports-2022-106158.
12.
Hassebrock JD, Gulbrandsen MT, Asprey WL, Makovicka JL, Chhabra A. Knee Ligament Anatomy and Biomechanics. Sports Med Arthrosc Rev. 2020;28(3):80–86. doi:10.1097/JSA.0000000000000279.
13.
Heuck A, Woertler K. Posttreatment Imaging of the Knee: Cruciate Ligaments and Menisci. Semin Musculoskelet Radiol. 2022;26(3):230–241. doi:10.1055/s-0041-1741516.
14.
Amis AA. Anterolateral knee biomechanics. Knee Surg Sports Traumatol Arthrosc. 2017;25(4):1015–1023. doi:10.1007/s00167-017-4494-x.
15.
Boyd J, Holt JK. Knee Ligament Instability Patterns: What Is Clinically Important. Clin Sports Med. 2019;38(2):169–182. doi:10.1016/j.csm.2018.12.001.
16.
Kaeding CC, Léger-St-Jean B, Magnussen RA. Epidemiology and Diagnosis of Anterior Cruciate Ligament Injuries. Clin Sports Med. 2017;36(1):1–8. doi:10.1016/j.csm.2016.08.001.
17.
Szlęzak M, Kowal W, Kowal T, et al. Assessment of the correlation between the flexion and extension knee range of motion among patients with injured anterior cruciate ligament. Journal of Manual Medicine. 2018,21;11–16.
18.
Berend ME, Meding JB, Malinzak RA, Faris PM, Jackson MD, Davis KE, Ritter MA. ACL Damage and Deficiency is Associated with More Severe Preoperative Deformity, Lower Range of Motion at the Time of TKA. HSS J. 2016;12(3):235–239. doi:10.1007/s11420-016-9504-x.
19.
Musahl V, Karlsson J. Anterior Cruciate Ligament Tear. N Engl J Med. 2019;380(24):2341–2348. doi:10.1056/NEJMcp1805931.
20.
Johnson VL, Guermazi A, Roemer FW, Hunter DJ. Association between radiographic anterior cruciate ligament tear and joint symptoms: Data from the osteoarthritis initiative. Int J Rheum Dis. 2020;23:576–581. doi.org/10.1111/1756-185X.13806.
21.
Lachman Sobrado MF, Bonadio MB, Ribeiro GF, Giglio PN, Helito CP, Demange MK. Lever sign test for chronic acl injury: a comparison with lachman and anterior drawer tests. Acta Ortop Bras. 2021;29(3):132–136. doi:10.1590/1413-785220212903238345.
22.
Zhao GL, Lyu JY, Liu CQ, Wu JG, Xia J, Huang GY. A modified anterior drawer test for anterior cruciate ligament ruptures. J Orthop Surg Res. 2021;16(1):260. doi:10.1186/s13018-021-02381-x.
23.
İpek D, Zehir S, Dündar A. Is Lever Test Superior to Lachman, Pivot Shift, Drawer Tests in Diagnosing Anterior Cruciate Ligament Injuries? Cureus. 2022;14(2):e22049. doi:10.7759/cureus.22049.
24.
Muneta T, Ezura Y, Sekiya I, Yamamoto H. Anterior knee laxity and loss of extension after anterior cruciate ligament injury. Am J Sports Med. 1996 Sep-Oct;24(5):603–7. doi:10.1177/036354659602400507.
25.
Myer GD, Ford KR, Di Stasi SL, Foss KD, Micheli LJ, Hewett TE. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? Br J Sports Med. 2015;49(2):118–22. doi:10.1136/bjsports-2013-092536.
26.
Sachs RA, Daniel DM, Stone ML, Garfein RF. Patellofemoral problems after anterior cruciate ligament reconstruction. Am J Sports Med. 1989;17(6):760–5. doi:10.1177/036354658901700606.
27.
Hong E, Kraft MC. Evaluating anterior knee pain. Med Clin North Am. 2014;98(4):697–717, xi. doi:10.1016/j.mcna.2014.03.001.
28.
Żelawski M, Starzewska M, Gradzik TS. Imaging of the patellofemoral joint. J Orthop Trauma Surg Rel Res. 2014;2(36):54–63.
29.
Reijman M, Eggerding V, van Es E, van Arkel E, van den Brand I, van Linge J, Zijl J, Waarsing E, Bierma-Zeinstra S, Meuffels D. Early surgical reconstruction versus rehabilitation with elective delayed reconstruction for patients with anterior cruciate ligament rupture: COMPARE randomised controlled trial. BMJ. 2021;372:n375. doi:10.1136/bmj.n375.
30.
Beard DJ, Davies L, Cook JA, Stokes J, Leal J, Fletcher H, Abram S, Chegwin K, Greshon A, Jackson W, Bottomley N, Dodd M, Bourke H, Shirkey BA, Paez A, Lamb SE, Barker K, Phillips M, Brown M, Lythe V, Mirza B, Carr A, Monk P, Morgado Areia C, O’Leary S, Haddad F, Wilson C, Price A; ACL SNNAP Study Group. Rehabilitation versus surgical reconstruction for non-acute anterior cruciate ligament injury (ACL SNNAP): a pragmatic randomised controlled trial. Lancet. 2022;400(10352):605–615. doi:10.1016/S0140-6736(22)01424-6.
31.
Çelik D, Turkel N. The effectiveness of Pilates for partial anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2017;25(8):2357–2364. doi:10.1007/s00167-015-3718-1.
32.
LaPrade RF, Morgan PM, Wentorf FA, Johansen S, Engebretsen L. The anatomy of the posterior aspect of the knee. An anatomic study. J Bone Joint Surg Am. 2007;89(4):758–64. doi:10.2106/JBJS.F.00120.
33.
Fam LPD, Fruheling VM, Pupim B, Ramos CH, de Moura MFA, Namba M, da Silva JLV, da Cunha LAM, de Oliveira Franco APG, Filho ES. Oblique popliteal ligament – an anatomical study. Rev Bras Ortop. 2013;48(5):402–405. doi:10.1016/j.rboe.2012.07.010.
34.
Hedderwick M, Stringer MD, McRedmond L, Meikle GR, Woodley SJ. The oblique popliteal ligament: an anatomic and MRI investigation. Surg Radiol Anat. 2017;39(9):1017–1027. doi:10.1007/s00276-017-1838-7.
35.
Wu XD, Yu JH, Zou T, Wang W, LaPrade RF, Huang W, Sun SQ. Anatomical Characteristics and Biomechanical Properties of the Oblique Popliteal Ligament. Sci Rep. 2017;7:42698. doi:10.1038/srep42698.
36.
Kaplan Y. Identifying individuals with an anterior cruciate ligament-deficient knee as copers and noncopers: a narrative literature review. J Orthop Sports Phys Ther. 2011;41(10):758–66. doi:10.2519/jospt.2011.3384.