PRACA PRZEGLĄDOWA
Imbir lekarski (Zingiber officinale) – surowiec o właściwościach terapeutycznych
Więcej
Ukryj
1
Chair of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland
2
Chair of Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
Autor do korespondencji
Katarzyna Janda
Chair and Department of Human Nurtition and Metabolomics, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland
Med Og Nauk Zdr. 2021;27(1):40-44
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel pracy:
Imbir (Zingiber officinale) jest rośliną szeroko stosowaną na całym świecie. Ze względu na bogaty aromat i charakterystyczny ostry smak znalazł zastosowanie w kuchni jako przyprawa. Jednak mnogość zawartych w nim fitoskładników sprawia, że imbir wykazuje również pozytywny wpływ na organizm człowieka. Celem pracy jest przedstawienie możliwości wykorzystania imbiru i jego bioaktywnych składników w leczeniu wybranych chorób.
Skrócony opis stanu wiedzy:
Imbir jest źródłem wielu cennych składników odżywczych, które nadają mu właściwości organoleptyczne, ale także prozdrowotne. Olejki eteryczne i oleożywica są głównymi składnikami odpowiedzialnymi za specyficzny zapach i ostry smak imbiru. Ponadto imbir zawiera wiele fitoskładników, takich jak seskwiterpeny i monoterpeny, do których należą: α-zingiberen, α-faranezen, β-bisabolen, β-felandren, zingiberol, geraniol, linalool, cynoele, a także zingeron i szogaole. Imbir jest od dawna stosowany w leczeniu zaburzeń żołądkowo-jelitowych i sercowo-naczyniowych, bólów reumatycznych, cukrzycy, nowotworów i depresji. Nadal znajduje zastosowanie w chińskiej i arabskiej medycynie ludowej jako środek rozgrzewający lub jako lek na choroby układu pokarmowego i wątroby. Ponadto stosuje się go w zaparciach, przeziębieniach, nieżytach nosa i zapaleniu oskrzeli. Badania wskazują również na cenne właściwości antyoksydacyjne, przeciwbakteryjne i przeciwzapalne imbiru. Te korzyści zdrowotne przypisuje się zawartym w nim związkom fenolowym, głównie gingerolowi i shoagolowi.
Podsumowanie:
Imbir jest bogatym źródłem wielu związków bioaktywnych, które posiadają właściwości lecznicze i mogą być stosowane wspomagająco w wielu chorobach, takich jak cukrzyca, choroby układu krążenia, nudności, wymioty i procesy zapalne.
Introduction:
Ginger (Zingiber officinale) is a plant widely used all over the world. Due to its rich aroma and characteristic, spicy taste, it has been used in the kitchen as a spice additive. However, the multitude of phytonutrients it contains makes ginger a plant with a positive effect on the human body.
Objective:
The aim of the study is to present the possibilities of using ginger and its bioactive ingredients in the treatment of selected diseases.
Brief description of the state of knowledge:
Ginger is a source of many valuable nutrients that determine its organoleptic characteristics, which also has pro-health properties. Essential oils and oleoresin are the main compounds responsible for the specific smell and sharp taste of ginger [8]. Additionally, ginger contains many phytonutrients, such as sesquiterpenes and monoterpenes, which include α – zingiberene, α – faranezene, β – bisabolene, β – felandren, zingiberol, geraniol, linalool, and cineole, as well as zingerone and shogaole. Ginger has been used for a long time to treat gastrointestinal and cardiovascular disorders, rheumatic pains, diabetes, cancer and depression. It is still used in Chinese and Arab folk medicine as a warming agent, or as a remedy for the digestive system and liver diseases. Moreover, it is used in constipation, cold, rhinitis and bronchitis. Research also indicates high antioxidant, antimicrobial and anti-inflammatory properties. These health benefits are attributed to its phenolic compounds, mainly gingerols and shoagols.
Conclusions:
Ginger is a rich source of multiple bioactive compounds which have medicinal value, and has a supporting effect in several diseases, such as diabetes, cardiovascular diseases, nausea, emesis and inflammatory processes.
Antoniewicz J, Jakubczyk K, Gutowska I, Janda K. Ginger (Zingiber officinale) – spice with therapeutic properties. Med Og Nauk Zdr. 2021; 27(1): 40–44. doi: 10.26444/monz/134013
REFERENCJE (61)
1.
Mahomoodally MF, Aumeeruddy MZ, Rengasamy K, et al. Ginger and its active compounds in cancer therapy: From folk uses to nano- therapeutic applications. Semin. Cancer Biol. 2019; S1044-579X(19): 30213–30215. doi: 10.1016/j.semcancer.2019.08.009.
2.
Semwal RB, Semwal DK, Combrinck S, et al. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry. 2015; 117: 554–568. doi: 10.1016/j.phy tochem.2015.07.012.
3.
Bodagh MN, Maleki I, Hekmatdoost A. Ginger in gastrointestinal disorders: A systematic review of Clinical trials. Food Sci Nutr. 2019; 7(1): 96 –108. doi:10.1002/fsn3/807.
4.
Braun L, Cohen M. Herbs and Natural Supplements. An Evidence- based Guide. 2nd ed. Australia: Elsevier, 2007.
5.
Eliopoulos C. Ginger: more than a great spice. Director 2007; 15(1): 46–47.
7.
De Lima RMT, dos Reis AC, de Menezes A, et al. Protective and therapeutic potential of ginger Zingiber officinale extract and [6]-gingerol in cancer: A comprehensive review. Phyther Res. 2018; 32(2): 1885–1907. doi: 10.1002/ptr.6134.
8.
Huang B, Wang G, Chu Z, et al. Effect of Oven Drying, Microwave Drying, and Silica Gel Drying Methods on the Volatile Components of Ginger (Zingiber officinale Roscoe) by HS-SPME-GC-MS. Dry Technol. 2012; 30(2): 248–255. doi: 10.1080/07373937.2011.634976.
9.
Kulczyński B, Gramza-Michałowska A. Znaczenie żywieniowe imbiru. Bromatol. Chem Toksykol. 2016; 49(1): 57–63.
10.
De Lima RMT, Dos Reis AC, De Oliviera Santos JV, et al. Toxic, cytogenetics and antitumor evaluations of [6]-gingerol in non-clinical in vitro studies. Biomed. Pharmacother. 2019; 115: 108873. doi:10.1016/j.biopha.2019.108873.
11.
Zhang F. Zhang JG, Yang W, et al. 6-Gingerol attenuates LPS-induced neuroinflammation and cognitive impairment partially via suppressing astrocyte overactivation. Biomed Pharmacother. 2018; 107: 1523–1529. doi: 10.1016/j.biopha.2018.08.136.
12.
Dugasani S, Pichika MR, Nadarajah VD, et al. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol. 2010; 127: 515–520. doi:10.1016/j.jep.2009.10.004.
13.
Abusarah J, Benabdoune H, Shi Q, et al. Elucidating the Role of Protandim and 6-Gingerol in Protection Against Osteoarthritis. J Cell Biochem. 2017; 118: 1003–1013. doi:10.1002/jcb.25659.
14.
Wang J, Zhang L, Dong L, et al. 6-Gingerol, a Functional Polyphenol of Ginger, Promotes Browning through an AMPK-Dependent Pathway in 3T3-L1 Adipocytes. J. Agric. Food Chem. 2019; 67: 14056–14065. doi: 10.1021/acs.jafc.9b05072.
15.
Li J, Thangaiyan R, Govindasamy K, et al. Anti-inflammatory and anti-apoptotic effect of zingiberene on isoproterenol-induced myocardial infarction in experimental animals. Hum Exp Toxicol. 2020; 26: 96032712097513. doi: 10.1177/0960327120975131.
16.
Chen H, Tang X, Liu T, et al. Zingiberene inhibits in vitro and in vivo human colon cancer cell growth via autophagy induction, suppression of PI3K/ AKT/mTOR Pathway and caspase 2 deactivation. JBUON. 2019; 24: 1470 –1475.
17.
Yeo SK, Ali AY, Hayward OA, et al. β-Bisabolene, a Sesquiterpene from the Essential Oil Extract of Opoponax (Commiphora guidottii), Exhibits Cytotoxicity in Breast Cancer Cell Lines. Phyther Res. 2016; 30: 418–425. doi: 10.1002/ptr.5543.
18.
Cui Y, Shi Y, Bao Y, et al. Zingerone attenuates diabetic nephropathy through inhibition of nicotinamide adenine dinucleotide phosphate oxidase 4. Biomed Pharmacother. 2018: 99: 422–430. doi: 10.1016/j.biopha.2018.01.051.
19.
Choi JS, Ryu J, Bae WY, et al. Zingerone suppresses tumor development through decreasing cyclin D1 expression and inducing mitotic arrest. Int J Mol Sci. 2018: 19(9): 2832. doi: 10.3390/ijms19092832.
20.
Han Q, Yuan Q, Meng X, et al. 6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-γ. Oncotarget 2017; 8: 42001–42006. doi: 10.18632/oncotarget.16719.
21.
Kim YG, Kim MO, Kim SH, et al. 6-Shogaol, an active ingredient of ginger, inhibits osteoclastogenesis and alveolar bone resorption in ligature-induced periodontitis in mice. J Periodontol. 2020; 91: 809–818. doi: 10.1002/JPER.19-0228.
22.
Hassan SMA, Hassan AH. The possibility of using Shogaol for treatment of ulcerative colitis. Iran J Basic Med Sci. 2018; 21: 943–949. doi: 10.22038/ijbms.2018.28616.6932.
23.
Lete I, Allué J. The effectiveness of ginger in the prevention of nausea and vomiting during pregnancy and chemotherapy. Integr Med Insights. 2016; 11: 11–17. doi: 10.4137/IMI.S36273.
24.
Pertz HH, Lehmann J, Roth-Ehrang R, et al. Effects of ginger constituents on the gastrointestinal tract: Role of cholinergic M3 and serotonergic 5-HT3 and 5-HT4 receptors. Planta Med. 2011; 77: 973–978. doi: 10.1055/s-0030-1270747.
25.
Abdel-Aziz H, Windeck T, Ploch M, et al. Mode of action of gingerols ans shogaols in 5-HT3 receptors: Binding studies, cation uptake by the receptor channel and contraction of isolated guinea-pig ileum. Eur J Pharmacol. 2006; 530(1–2): 136–43. doi: 10.1016/j.ejphar.2005.10.049.
26.
Giacosa A, Morazzoni P, Bombardelli E, et al. Can nausea and vomiting be treated with Ginger extract? Eur Rev Med Pharmacol Sci. 2015; 19: 1291–1296.
27.
Stanisiere J, Mousset PY, Lafay S. How safe is ginger rhizome for decreasing nausea and vomiting in women during early pregnancy? Foods 2018; 7(4): 50. doi: 10.3390/foods7040050.
28.
Pongrojpaw D, Somprasit C, Chanthasenanont A. A Randomized Comparison of Ginger and Dimenhydrinate in the Treatment of Nausea and Vomiting in Pregnancy. J Med Assoc Thai. 2007; 90(9): 1703–1709.
29.
Portnoi G, Chng LA, Karimi-Tabesh L, et al. Prospective comparative study of the safety and effectiveness of ginger for the treatment of nausea and vomiting in pregnancy. Am J Obstet Gynecol. 2003; 189: 1374–1377. doi: 10.1067/S0002-9378(03)00649-5.
30.
Viljoen E, Visser J, Koen N, et al. A systematic review and meta-analysis of the effect and safety of ginger in the treatment of pregnancy-associated nausea and vomiting. Nutr J. 2014; 13: 20. doi: 10.1186/1475-2891-13-20.
31.
Lavdaniti M, Tsitsis N. Investigation of Nausea and Vomiting in Cancer Patients Undergoing Chemotherapy. Health Psychol Res. 2014; 2(3): 1550. doi: 10.4081/hpr.2014.1550.
32.
Crichton M, Marshall S, Marx W, et al. Efficacy of Ginger (Zingiber officinale) in Ameliorating Chemotherapy-Induced Nausea and Vomiting and Chemotherapy-Related Outcomes: A Systematic Review Update and Meta-Analysis. J Acad Nutr Diet. 2019; 119: 2055–2068. doi: 10.1016/j.jand.2019.06.009.
33.
Ryan JL, Heckler CE, Roscoe JA, et al. Ginger (Zingiber officinale) reduces acute chemotherapy-induced nausea: A URCC CCOP study of 576 patients. Support Care Cancer 2019; 20(7): 1479–1489. doi: 10.1007/s00520-011-1236-3.
34.
Panahi Y, Saadat A, Sahebkar A, et al. Effect of ginger on acute and delayed chemotherapy-induced nausea and vomiting: A pilot, randomized, open-label clinical trial. Integr Cancer Ther. 2012; 11(3): 204 –211. doi: 10.1177/1534735411433201.
35.
Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017; 128: 40–50. doi: 10.1016/j.diabres.2017.03.024.
36.
Drągowski P, Czyżewska U, Cekała E, et al. Diabetes as a social and economic problem. Pol. Przegląd Nauk o Zdrowiu 2014; 2(39): 163–166.
37.
Blair M. Diabetes Mellitus Review. Urol. Nurs. 2016; 36(1): 27–36.
38.
Zhu J, Chen H, Song Z, et al. Effects of Ginger (Zingiber officinale Roscoe) on Type 2 Diabetes Mellitus and Components of the Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Evid. Based Complement Alternat Med. 2018: 5692962. doi: 10.1155/2018/5692962.
39.
Khandouzi N, Shidfar F, Rajab A, et al. The effects of ginger on fasting blood sugar, hemoglobin A1c, apolipoprotein B, apolipoprotein A-I and malondialdehyde in type 2 diabetic patients. Iran J Pharm Res. 2015; 14: 131–140. doi: 10.22037/ijpr.2015.1632.
40.
Alshathly MR. Efficacy of Ginger (Zingiber officinale) in Ameliorating Streptozotocin-Induced Diabetic Liver Injury in Rats: Histological and Biochemical Studies. J Microsc Ultrastruct. 2019; 7: 91–101. doi:10.4103/JM AU.JM AU_16 _19.
41.
Shidfar F, Rajab A, Rahideh T, et al. The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J Complement Integr Med. 2015; 12: 165–170. doi: 10.1515/jcim-2014-0021.
42.
Abdulrazaq NB, Cho MM, Win NN, et al. Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br J Nutr. 2012; 108: 1194–1201. doi: 10.1017/S0007114511006635.
43.
Arzati MM, Honarvar NM, Saedisomeolia A, et al. The effects of ginger on fasting blood sugar, hemoglobin A1c, and lipid profiles in patients with type 2 diabetes. Int J Endocrinol Metab. 2017; 15(4): e57927. doi: 10.5812/ijem.57927.
44.
Mozaffari-Khosravi H, Talaei B, Jalali BA, et al. The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Complement Ther Med. 2014; 22(1): 9–16. doi: 10.1016/j.ctim.2013.12.017.
45.
Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sport Med. 2014; 44(2): 211–221. doi: 10.1007/s40279-013-0110-5.
46.
Li X, Guo J, Liang N, et al. 6-Gingerol regulates hepatic cholesterol metabolism by up-regulation of LDLR and cholesterol efflux-related genes in HepG2 Cells. Front Pharmacol. 2018; 9: 159. doi: 10.3389/fphar.2018.00159
47.
Pourmasoumi M, Hadi A, Rafie N, et al. The effect of ginger supplementation on lipid profile: A systematic review and meta-analysis of clinical trials. Phytomedicine. 2018; 43: 28–36. doi: 10.1016/j.phymed.2018.03.043.
48.
Saravanan G, Ponmurugan P, Deepa MA, et al. Anti-obesity action of gingerol: Effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet. J Sci Food Agric. 2014; 94: 2972–2977. doi: 10.1002/jsfa.6642.
49.
Arablou T, Aryaeian N, Valizadeh M, et al. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int J Food Sci Nutr. 2014; 65: 515–520. doi: 10.3109/09637486.2014.880671.
50.
Sacitharan PK. Ageing and osteoarthritis. Subcell Biochem. 2019; 91: 123–159. doi: 10.10 07/978-981-13-3681-2 _ 6.
51.
Koszowska A, Nowak J, Hawranek R. Choroba zwyrodnieniowa stawów w kontekście nadwagi i otyłości. Forum Zaburzeń Metab. 2015; 6(2): 56–63.
52.
Szymański M, Korzeniowska K, Jabłecka A. Nerkowe działania niepożądane związane ze stosowaniem NLPZ. Geriatria. 2014; 8: 1–9.
53.
Arulselvan P, Fard MT, Tan WS, et al. Role of Antioxidants and Natural Products in Inflammation. Oxid Med Cell Longev. 2016; 2016: 5276130. doi: 10.1155/2016/5276130.
54.
Van Breemen RB, Tao Y, Li W. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia 2011; 82: 38–43. doi: 10.1016/j.fitote.2010.09.004.
55.
Funk JL, Frye JB, Oyarzo JN, et al. Anti-inflammatory effects of the essential oils of ginger (Zingiber officinale Roscoe) in experimental rheumatoid arthritis. PharmaNutrition. 2016; 4(3): 123–131. doi: 10.1016/j.phanu.2016.02.004.
56.
Aryaeian N, Shahram F, Mahmoudi M, et al. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis. Gene. 2019; 698: 179–185. doi: 10.1016/j.gene.2019.01.048.
57.
CFR-Code of Federal Regulations Title 21. Chapter I – Food and Drug Administration. Departent of Health and Human Services. Subchapter B – Food For Human Consumption (Continued). Part 182 – Substances Generally Recognized as Safe.
https://www.accessdata.fda.gov... (access 16.12.2020).
58.
Moneret-Vautrin DA, Morisset M, Lemerdy P, et al. Food allergy and IgE sensitization caused by spices: CICBAA data (based on 589 cases of food allergy). Allerg Immunol. 2002; 34(4): 135–40.
59.
Toorenenbergen A, Dieges PH. Immunoglobulin E antibodies against coriander and other spices. J Allergy Clin Immunol. 1985; 76(3): 477–81. doi: 10.1016/0091-6749(85)90730-4.
60.
Lopez-De-Los-Santos P, Gonzales-de-Olano D, Madrigal-Burgaleta R, et al. Allergy to ginger with Cysteine proteinase GP-I as the relevant allergen. Ann Allergy Asthma Immunol. 2018; 121(5): 624–625. doi: 10.1016/j.anai.2018.07.013.61.
61.
Stäger J, Wüthrich B, Johansson SC. Spice allergy in celery-sensitive patients. Allergy 1991; 46(6): 475–8. doi: 10.1111/j.1398-9995.1991.tb04228.x.