PRACA PRZEGLĄDOWA
Choroba koronawirusowa 2019 (COVID-19) a stan odżywienia i sposób żywienia – przegląd literatury
Więcej
Ukryj
1
Student Wydziału Medycznego, kierunek Dietetyka, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu,
Polska
2
Katedra i Zakład Fizjologii
Uniwersytet Medyczny im. Karola Marcinkowskiego
w Poznaniu, Polska
Autor do korespondencji
Emilia Korek
Katedra i Zakład Fizjologii
Uniwersytet Medyczny im. Karola Marcinkowskiego
w Poznaniu
Med Og Nauk Zdr. 2022;28(2):111-120
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel:
Obecnie świat opanowany jest przez pandemię choroby koronawirusowej (COVID-19), która mocno
wpływa na system ochrony zdrowia. Sposób żywienia i stan odżywienia organizmu mają znaczący wpływ na przebieg oraz wynik leczenia COVID-19. Celem pracy jest podsumowanie dotychczasowego stanu wiedzy na temat wpływu sposobu żywienia i stanu odżywienia na rozwój i przebieg choroby koronawirusowej oraz przedstawienie propozycji zaleceń żywieniowych dotyczących postępowania dietetycznego w leczeniu COVID-19
Metody przeglądu:
Do wyszukiwania użyto bazy PubMed i fraz w języku angielskim: „COVID-19”, „SARS-CoV-2”, „żywienie”,
„dieta” oraz oficjalnych stron internetowych organizacji i stowarzyszeń medycznych.
Opis stanu wiedzy:
Przewlekły stan zapalny, zaburzenia układu odpornościowego, choroby przewlekłe, zaburzenia stanu
odżywienia i niedobór składników odżywczych mogą stanowić czynniki związane z ciężkością i przebiegiem COVID-19. Składniki odżywcze pełnią rolę w modulowaniu odpowiedzi immunologicznej
i wykazują działanie przeciwzapalne. Badania sugerują znaczenie mikroskładników odżywczych w interakcjach między układem odpornościowym a wirusami, w tym SARS-CoV-2. Rolę w modulowaniu odpowiedzi immunologicznej odgrywają: cynk, selen, miedź, żelazo, witaminy D, A, C, E oraz z grupy B, a także probiotyki. Niedobór tych składników może powodować niekorzystny przebieg choroby koronawirusowej.
Podsumowanie:
Stan odżywienia organizmu, sposób żywienia, w tym dostarczenie niezbędnych składników odżywczych
mogą powodować zmniejszenie podatności na zachorowanie oraz łagodzić ciężkość przebiegu choroby koronawirusowej. Rola żywienia i interwencji dietetycznych w COVID-19 jest bardzo obiecująca. Obszar ten jest nowatorski, dlatego potrzebne są dalsze badania, aby uzasadnić korzyści tych działań w zwalczaniu choroby koronawirusowej.
Introduction and objective:
Currently, the world is affected by the pandemic caused by coronavirus disease (COVID-19), which strongly affects the health care system. Dietary habits and nutritional status of the body significantly influence the course and outcome of COVID-19 treatment. The aim of this study is the summary of the current knowledge about the impact of dietary habits and nutritional status on the development and course of coronavirus disease and the presentation of nutritional recommendations for the dietary management in COVID-19 treatment.
Review methods:
The PubMed database and the official websites of medical organizations and associations were searched for the English phrases ‘COVID-19’, ‘SARS-CoV-2’, ‘nutrition’, ‘diet’.
Abbreviated description of the state of knowledge:
Chronic inflammation, immune system disorders, chronic diseases, nutritional status disorders and deficiency of nutrients might present possible factors associated with the severity and course of COVID-19. The nutrients play a direct role as cofactors and regulators of the immune system and reveal antiinflammatory effects. The supply of zinc, selenium, copper, iron, vitamin D, A, C, and B-group, as well as probiotics is important for the optimal function of the immune system. Deficiency of this micronutrients plays a remarkable role in an adverse course of COVID-19.
Summary:
The nutritional status of the body, dietary habits including the supply of necessary nutrients can have an impact of the reduction of susceptibility and alleviate the adverse consequences of coronavirus disease. The role of diet and nutritional interventions in COVID-19 is highly promising. This area of study is innovative; therefore, further investigations are needed to justify specific benefits from these actions for combating coronavirus disease.
Rosiejka D, Korek E. Choroba koronawirusowa 2019 (COVID-19) a stan odżywienia i sposób żywienia – przegląd literatury. Med Og Nauk Zdr.
2022; 28(2): 111–120. doi: 10.26444/monz/148058
REFERENCJE (158)
1.
Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med. 2020; 382(13): 1199–1207. doi:10.1056/NEJMoa2001316.
2.
Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res. 2014; 59(1–3): 118–128. doi:10.1007/s12026-014-8534-z.
3.
Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. doi:10.1056/NEJMoa2001017.
4.
Jin Y, Yang H, Ji W, et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses. 2020;12(4):372. doi:10.3390/v12040372.
5.
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020;92(5):479–490. doi:10.1002/jmv.25707.
6.
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507–513. doi:10.1016/S0140-6736(20)30211-7.
7.
He F, Deng Y, Li W. Coronavirus disease 2019: What we know? J Med Virol. 2020;92(7):719–725. doi:10.1002/jmv.25766.
8.
Brooks SK, Webster RK, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet. 2020;395(10227):912–920. doi:10.1016/S0140–6736(20)30460-8.
9.
Hawryluck L, Gold WL, Robinson S, Pogorski S, Galea S, Styra R. SARS Control and Psychological Effects of Quarantine, Toronto, Canada. Emerg Infect Dis. 2004;10(7):1206–1212. doi:10.3201/eid1007.030703.
10.
Muscogiuri G, Barrea L, Savastano S, Colao A. Nutritional recommendations for CoVID-19 quarantine. Eur J Clin Nutr. 2020;74(6):850–851. doi:10.1038/s41430-020-0635-2.
12.
Flaskerud JH. Mood and Food. Issues Ment Health Nurs. 2015;36(4):307–310. doi:10.3109/01612840.2014.962677.
13.
Weyh C, Krüger K, Strasser B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients. 2020;12(3):622. doi:10.3390/nu12030622.
14.
Laviano A, Koverech A, Zanetti M. Nutrition support in the time of SARS-CoV-2 (COVID-19). Nutrition. 2020;74:110834. doi:10.1016/j.nut.2020.110834.
15.
Fedele D, De Francesco A, Riso S, Collo A. Obesity, malnutrition, and trace element deficiency in the coronavirus disease (COVID-19) pandemic: An overview. Nutrition. 2021;81:111016. doi:10.1016/j.nut.2020.111016.
16.
Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239. doi:10.1001/jama.2020.2648.
18.
Engin AB, Engin ED, Engin A. Two important controversial risk factors in SARS-CoV-2 infection: Obesity and smoking. Environ Toxicol Pharmacol. 2020;78:103411. doi:10.1016/j.etap.2020.103411.
19.
Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. doi:10.1016/j.ijid.2020.03.017.
20.
Stefan N, Birkenfeld AL, Schulze MB, Ludwig DS. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrinol. 2020;16(7):341–342. doi:10.1038/s41574-020-0364-6.
21.
Vieira-Potter VJ. Inflammation and macrophage modulation in adipose tissues: Adipose tissue macrophage modulation. Cell Microbiol. 2014;16(10):1484–1492. doi:10.1111/cmi.12336.
22.
Nakeshbandi M, Maini R, Daniel P, et al. The impact of obesity on COVID-19 complications: a retrospective cohort study. Int J Obes. 2020;44(9):1832–1837. doi:10.1038/s41366-020-0648-x.
23.
Mash RJ, Presence-Vollenhoven M, Adeniji A, et al. Evaluation of patient characteristics, management and outcomes for COVID-19 at district hospitals in the Western Cape, South Africa: descriptive observational study. BMJ Open. 2021;11(1):e047016. doi:10.1136/bmjopen-2020-047016.
24.
Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020;108:154262. doi:10.1016/j.metabol.2020.154262.
25.
Kim TS, Roslin M, Wang JJ, et al. BMI as a Risk Factor for Clinical Outcomes in Patients Hospitalized with COVID-19 in New York. Obesity. 2021;29(2):279–284. doi:10.1002/oby.23076.
26.
Peña JE de la, Rascón-Pacheco RA, Ascencio-Montiel I de J, et al. Hypertension, Diabetes and Obesity, Major Risk Factors for Death in Patients with COVID-19 in Mexico. Arch Med Res. 2021;52(4):443–449. doi:10.1016/j.arcmed.2020.12.002.
27.
Hernández-Galdamez DR, González-Block MÁ, Romo-Dueñas DK, et al. Increased Risk of Hospitalization and Death in Patients with COVID-19 and Pre-existing Noncommunicable Diseases and Modifiable Risk Factors in Mexico. Arch Med Res. 2020;51(7):683–689.doi:10.1016/j.arcmed.2020.07.003.
28.
Anderson MR, Geleris J, Anderson DR, et al. Body Mass Index and Risk for Intubation or Death in SARS-CoV-2 Infection: A Retrospective Cohort Study. Ann Intern Med. 2020;173(10):782–790. doi:10.7326/ M20-3214.
29.
Rao X, Wu C, Wang S, et al. The importance of overweight in COVID-19: A retrospective analysis in a single center of Wuhan, China. Medicine (Baltimore). 2020;99(43):e22766. doi:10.1097/MD.0000000000022766.
30.
Frank RC, Mendez SR, Stevenson EK, Guseh JS, Chung M, Silverman MG. Obesity and the Risk of Intubation or Death in Patients With Coronavirus Disease 2019. Crit Care Med. 2020;48(11):e1097-e1101. doi:10.1097/CCM.0000000000004553.
31.
van Zelst CM, Janssen ML, Pouw N, Birnie E, Castro Cabezas M, Braunstahl GJ. Analyses of abdominal adiposity and metabolic syndrome as risk factors for respiratory distress in COVID-19. BMJ Open Respir Res. 2020;7(1):e000792. doi:10.1136/bmjresp-2020-000792.
32.
Hennighausen L, Lee HK. Activation of the SARS-CoV-2 Receptor Ace2 by Cytokines through Pan JAK-STAT Enhancers. Genomics; 2020. doi:10.1101/2020.05.11.089045.
33.
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448. doi:10.1126/science.abb2762.
34.
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–280.e8. doi:10.1016/j. cell.2020.02.052.
35.
Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181(5):1016–1035.e19. doi:10.1016/j.cell.2020.04.035.
36.
Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes. 2012;19(2):81–87. doi:10.1097/MED.0b013e3283514e13.
37.
de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett. 2008;582(1):97–105. doi:10.1016/j.febslet.2007.11.057.
38.
Sun Q, Li J, Gao F. New insights into insulin: The anti-inflammatory effect and its clinical relevance. World J Diabetes. 2014;5(2):89. doi:10.4239/wjd.v5.i2.89.
39.
Huizinga GP, Singer BH, Singer K. The Collision of Meta-Inflammation and SARS-CoV-2 Pandemic Infection. Endocrinology. 2020;161(11):bqaa154. doi:10.1210/endocr/bqaa154.
40.
Park HK, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism. 2015;64(1):24–34. doi:10.1016/j.metabol.2014.08.004.
41.
Abella V, Scotece M, Conde J, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol. 2017;13(2):100–109. doi:10.1038/nrrheum.2016.209.
42.
Piazza G, Campia U, Hurwitz S, et al. Registry of Arterial and Venous Thromboembolic Complications in Patients With COVID-19. J Am Coll Cardiol. 2020;76(18):2060–2072. doi:10.1016/j.jacc.2020.08.070.
43.
Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147. doi:10.1016/j.thromres.2020.04.013.
44.
Zhou C, Chen Y, Ji Y, He X, Xue D. Increased Serum Levels of Hepcidin and Ferritin Are Associated with Severity of COVID-19. Med Sci Monit. 2020;26. doi:10.12659/MSM.926178.
45.
Ravera M, Nickolas T, Plebani M, et al. Overweight-obesity is associated with decreased vitamin K2 levels in hemodialysis patients. Clin Chem Lab Med CCLM. 2021;59(3):581–589. doi:10.1515/cclm-2020-0194.
46.
Dofferhoff ASM, Piscaer I, Schurgers LJ, et al. Reduced Vitamin K Status as a Potentially Modifiable Risk Factor of Severe Coronavirus Disease 2019. Clin Infect Dis. Published online August 27, 2020:ciaa1258. doi:10.1093/cid/ciaa1258.
47.
Nägele MP, Haubner B, Tanner FC, Ruschitzka F, Flammer AJ. Endothelial dysfunction in COVID-19: Current findings and therapeutic implications. Atherosclerosis. 2020;314:58–62. doi:10.1016/j.atherosclerosis. 2020.10.014.
48.
Alwarawrah Y, Kiernan K, MacIver NJ. Changes in Nutritional Status Impact Immune Cell Metabolism and Function. Front Immunol. 2018;9:1055. doi:10.3389/fimmu.2018.01055.
49.
Saucillo DC, Gerriets VA, Sheng J, Rathmell JC, MacIver NJ. Leptin Metabolically Licenses T Cells for Activation To Link Nutrition and Immunity. J Immunol. 2014;192(1):136–144. doi:10.4049/jimmunol. 1301158.
50.
Boden G, Chen X, Mozzoli M, Ryan I. Effect of fasting on serum leptin in normal human subjects. J Clin Endocrinol Metab. 1996;81(9):3419–3423. doi:10.1210/jcem.81.9.8784108.
51.
G. Gandy (Ed.). Manual of Dietetic Practice. 6th ed. Wiley-Blackwell, 2019.
52.
Jia H. Pulmonary Angiotensin-Converting Enzyme 2 (ACE2) and Inflammatory Lung Disease. Shock. 2016;46(3):239–248. doi:10.1097/ SHK.0000000000000633.
53.
Li T, Zhang Y, Gong C, et al. Prevalence of malnutrition and analysis of related factors in elderly patients with COVID-19 in Wuhan, China. Eur J Clin Nutr. 2020;74(6):871–875. doi:10.1038/s41430-020-0642-3.
54.
Di Renzo L, Gualtieri P, Pivari F, et al. Eating habits and lifestyle changes during COVID-19 lockdown: an Italian survey. J Transl Med. 2020;18(1):229. doi:10.1186/s12967-020-02399-5.
55.
Sidor A, Rzymski P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients. 2020;12(6):1657. doi:10.3390/nu12061657.
56.
Martínez-de-Quel Ó, Suárez-Iglesias D, López-Flores M, Pérez CA. Physical activity, dietary habits and sleep quality before and during COVID-19 lockdown: A longitudinal study. Appetite. 2021;158:105019. doi:10.1016/j.appet.2020.105019.
57.
Gammoh N, Rink L. Zinc in Infection and Inflammation. Nutrients. 2017;9(6):624. doi:10.3390/nu9060624.
58.
Prasad AS, Bao B, Beck FWJ, Kucuk O, Sarkar FH. Antioxidant effect of zinc in humans. Free Radic Biol Med. 2004;37(8):1182–1190. doi:10.1016/j.freeradbiomed.2004.07.007.
59.
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr. 2019;10(4):696–710. doi:10.1093/advances/ nmz013.
60.
Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines. Semin Immunol. 2014;26(3):253–266. doi:10.1016/j.smim.2014.05.004.
61.
Lawrence T. The Nuclear Factor NF- B Pathway in Inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651-a001651. doi:10.1101/ cshperspect.a001651.
62.
Skalny A, Rink L, Ajsuvakova O, et al. Zinc and respiratory tract infections: Perspectives for COVID‑19 (Review). Int J Mol Med. Published online April 14, 2020. doi:10.3892/ijmm.2020.4575.
63.
Derwand R, Scholz M. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win today’s battle against COVID-19? Med Hypotheses. 2020;142:109815. doi:10.1016/j. mehy.2020.109815.
64.
Rayman MP. Selenium and human health. The Lancet. 2012;379(9822):1256–1268. doi:10.1016/S0140-6736(11)61452-9.
65.
Nencioni L, Sgarbanti R, Amatore D, et al. Intracellular Redox Signaling as Therapeutic Target for Novel Antiviral Strategy. Curr Pharm Des. 2011;17(35):3898–3904. doi:10.2174/138161211798357728.
66.
Guillin O, Vindry C, Ohlmann T, Chavatte L. Selenium, Selenoproteins and Viral Infection. Nutrients. 2019;11(9):2101. doi:10.3390/nu11092101.
67.
Ivory K, Prieto E, Spinks C, et al. Selenium supplementation has beneficial and detrimental effects on immunity to influenza vaccine in older adults. Clin Nutr. 2017;36(2):407–415. doi:10.1016/j.clnu.2015.12.003.
68.
Beck MA, Nelson HK, Shi Q, et al. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J. 2001;15(8):1481–1483. doi:10.1096/fj.00-0721fje.
69.
Harthill M. Review: Micronutrient Selenium Deficiency Influences Evolution of Some Viral Infectious Diseases. Biol Trace Elem Res. 2011;143(3):1325–1336. doi:10.1007/s12011-011-8977-1.
70.
Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020;111(6):1297–1299. doi:10.1093/ ajcn/nqaa095.
71.
Maggini S, Pierre A, Calder P. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10(10):1531. doi:10.3390/nu10101531.
72.
Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020;12(1):236. doi:10.3390/nu12010236.
73.
Raha S, Mallick R, Basak S, Duttaroy AK. Is copper beneficial for COVID-19 patients? Med Hypotheses. 2020;142:109814. doi:10.1016/j. mehy.2020.109814.
74.
Percival SS. Copper and immunity. Am J Clin Nutr. 1998;67(5):1064S- -1068S. doi:10.1093/ajcn/67.5.1064S.
75.
Borkow G, Lara HH, Covington CY, Nyamathi A, Gabbay J. Deactivation of Human Immunodeficiency Virus Type 1 in Medium by Copper Oxide-Containing Filters. Antimicrob Agents Chemother. 2008;52(2):518–525. doi:10.1128/AAC.00899-07.
76.
Wessling-Resnick M. Crossing the Iron Gate: Why and How Transferrin Receptors Mediate Viral Entry. Annu Rev Nutr. 2018;38(1):431–458. doi:10.1146/annurev-nutr-082117-051749.
77.
Ekiz C, Agaoglu L, Karakas Z, Gurel N, Yalcin I. The effect of iron deficiency anemia on the function of the immune system. Hematol J. 2005;5(7):579–583. doi:10.1038/sj.thj.6200574.
78.
Deugnier Y, Battistelli D, Jouanolle H, et al. Hepatitis B virus infection markers in genetic haemochromatosis. J Hepatol. 1991;13(3):286–290. doi:10.1016/0168-8278(91)90070-R.
79.
Maggini S, Wintergerst ES, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr. 2007;98(S1):S29-S35. doi:10.1017/S0007114507832971.
80.
Wang H, Li Z, Niu J, et al. Antiviral effects of ferric ammonium citrate. Cell Discov. 2018;4(1):14. doi:10.1038/s41421-018-0013-6.
81.
Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18(2):153–165. doi:10.1007/s11154-017-9424-1.
82.
Pereira-Santos M, Costa PRF, Assis AMO, Santos CAST, Santos DB. Obesity and vitamin D deficiency: a systematic review and meta-analysis: Obesity and vitamin D. Obes Rev. 2015;16(4):341–349. doi:10.1111/obr.12239.
83.
Medrano M, Carrillo-Cruz E, Montero I, Perez-Simon J. Vitamin D: Effect on Haematopoiesis and Immune System and Clinical Applications. Int J Mol Sci. 2018;19(9):2663. doi:10.3390/ijms19092663.
84.
Bikle DD. Vitamin D and immune function: Understanding common pathways. Curr Osteoporos Rep. 2009;7(2):58–63. doi:10.1007/s11914-009-0011-6.
85.
Sadeghi K, Wessner B, Laggner U, et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol. 2006;36(2):361–370. doi:10.1002/eji.200425995.
86.
Gruber–Bzura BM. Vitamin D and Influenza—Prevention or Therapy? Int J Mol Sci. 2018;19(8):2419. doi:10.3390/ijms19082419.
87.
Hansdottir S, Monick MM, Lovan N, Powers L, Gerke A, Hunninghake GW. Vitamin D Decreases Respiratory Syncytial Virus Induction of NF-κB–Linked Chemokines and Cytokines in Airway Epithelium While Maintaining the Antiviral State. J Immunol. 2010;184(2):965–974. doi:10.4049/jimmunol.0902840.
88.
Schottker B, Jorde R, Peasey A, et al. Vitamin D and mortality: meta-analysis of individual participant data from a large consortium of cohort studies from Europe and the United States. BMJ. 2014;348(jun17 16):g3656-g3656. doi:10.1136/bmj.g3656.
89.
Mata-Granados JM, Vargas-Vasserot J, Ferreiro-Vera C, Luque de Castro MD, Pavón RG, Quesada Gómez JM. Evaluation of vitamin D endocrine system (VDES) status and response to treatment of patients in intensive care units (ICUs) using an on-line SPE-LC-MS/MS method. J Steroid Biochem Mol Biol. 2010;121(1–2):452–455. doi:10.1016/j.jsbmb.2010.03.078.
90.
Garg M, Al-Ani A, Mitchell H, Hendy P, Christensen B. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North-supports vitamin D as a factor determining severity. Authors’ reply. Aliment Pharmacol Ther. 2020;51(12):1438–1439. doi:10.1111/apt.15796.
91.
Daneshkhah A, Agrawal V, Eshein A, Subramanian H, Roy HK, Backman V. Evidence for possible association of vitamin D status with cytokine storm and unregulated inflammation in COVID-19 patients. Aging Clin Exp Res. 2020;32(10):2141–2158. doi:10.1007/s40520-020-01677-y.
92.
Caccialanza R, Laviano A, Lobascio F, et al. Early nutritional supplementation in non-critically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): Rationale and feasibility of a shared pragmatic protocol. Nutrition. 2020;74:110835. doi:10.1016/j.nut.2020.110835.
93.
Sommer A, Vyas KS. A global clinical view on vitamin A and carotenoids. Am J Clin Nutr. 2012;96(5):1204S-1206S. doi:10.3945/ajcn.112.034868.
94.
Biesalski HK, Nohr D. Importance of vitamin-A for lung function and development. Mol Aspects Med. 2003;24(6):431–440. doi:10.1016/S0098–2997(03)00039-6.
95.
Timoneda J, Rodríguez-Fernández L, Zaragozá R, et al. Vitamin A Deficiency and the Lung. Nutrients. 2018;10(9):1132. doi:10.3390/nu10091132.
96.
Chan JFW, Lau SKP, To KKW, Cheng VCC, Woo PCY, Yuen KY. Middle East Respiratory Syndrome Coronavirus: Another Zoonotic Betacoronavirus Causing SARS-Like Disease. Clin Microbiol Rev. 2015;28(2):465–522. doi:10.1128/CMR.00102-14.
97.
Elias KM, Laurence A, Davidson TS, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood. 2008;111(3):1013–1020. doi:10.1182/blood-2007-06-096438.
98.
West CE, Sijtsma SR, Kouwenhoven B, Rombout JHWM, van der Zijpp AJ. Epithelia-Damaging Virus Infections Affect Vitamin A Status in Chickens. J Nutr. 1992;122(2):333–339. doi:10.1093/jn/122.2.333.
99.
Elmadfa I, Meyer AL. The Role of the Status of Selected Micronutrients in Shaping the Immune Function. Endocr Metab Immune Disord – Drug Targets. 2019;19(8):1100–1115. doi:10.2174/1871530319666190529101816.
100.
Ang A, Pullar JM, Currie MJ, Vissers MCM. Vitamin C and immune cell function in inflammation and cancer. Biochem Soc Trans. 2018;46(5):1147–1159. doi:10.1042/BST20180169.
101.
May JM, Harrison FE. Role of Vitamin C in the Function of the Vascular Endothelium. Antioxid Redox Signal. 2013;19(17):2068–2083. doi:10.1089/ars.2013.5205.
102.
Carr A, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. doi:10.3390/nu9111211.
103.
Myint PK, Wilson AM, Clark AB, Luben RN, Wareham NJ, Khaw KT. Plasma vitamin C concentrations and risk of incident respiratory diseases and mortality in the European Prospective Investigation into Cancer-Norfolk population-based cohort study. Eur J Clin Nutr. 2019;73(11):1492–1500. doi:10.1038/s41430-019-0393-1.
104.
Kim Y, Kim H, Bae S, et al. Vitamin C Is an Essential Factor on the Anti-viral Immune Responses through the Production of Interferon-α/β at the Initial Stage of Influenza A Virus (H3N2) Infection. Immune Netw. 2013;13(2):70. doi:10.4110/in.2013.13.2.70.
105.
Erol N, Saglam L, Saglam YS, et al. The Protection Potential of Antioxidant Vitamins Against Acute Respiratory Distress Syndrome: a Rat Trial. Inflammation. 2019;42(5):1585–1594. doi:10.1007/s10753-019-01020-2.
106.
Boretti A, Banik BK. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PharmaNutrition. 2020;12:100190. doi:10.1016/j.phanu.2020.100190.
107.
Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med Drug Discov. 2020;5:100028. doi:10.1016/j.medidd.2020.100028.
108.
Galmés S, Serra F, Palou A. Vitamin E Metabolic Effects and Genetic Variants: A Challenge for Precision Nutrition in Obesity and Associated Disturbances. Nutrients. 2018;10(12):1919. doi:10.3390/nu10121919.
109.
Traber MG. Vitamin E Regulatory Mechanisms. Annu Rev Nutr. 2007;27(1):347–362. doi:10.1146/annurev.nutr.27.061406.093819.
110.
Lee G, Han S. The Role of Vitamin E in Immunity. Nutrients. 2018;10(11):1614. doi:10.3390/nu10111614.
111.
Beck MA, Kolbeck PC, Rohr LH, Shi Q, Morris VC, Levander OA. Vitamin E Deficiency Intensifies the Myocardial Injury of Coxsackievirus B3 Infection of Mice. J Nutr. 1994;124(3):345–358. doi:10.1093/jn/124.3.345.
112.
Meydani SN, Leka LS, Fine BC, et al. Vitamin E and Respiratory Tract Infections in Elderly Nursing Home Residents: A Randomized Controlled Trial. JAMA. 2004;292(7):828. doi:10.1001/jama.292.7.828.
113.
Sheridan PA, Beck MA. The Immune Response to Herpes Simplex Virus Encephalitis in Mice Is Modulated by Dietary Vitamin E. J Nutr. 2008;138(1):130–137. doi:10.1093/jn/138.1.130.
114.
Leshchinsky TV, Klasing KC. Relationship Between the Level of Dietary Vitamin E and the Immune Response of Broiler Chickens. Poult Sci. 2001;80(11):1590–1599. doi:10.1093/ps/80.11.1590.
115.
Nathens AB, Neff MJ, Jurkovich GJ, et al. Randomized, Prospective Trial of Antioxidant Supplementation in Critically Ill Surgical Patients: Ann Surg. 2002;236(6):814–822. doi:10.1097/00000658-200212000-00014.
116.
Nonnecke BJ, McGill JL, Ridpath JF, Sacco RE, Lippolis JD, Reinhardt TA. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J Dairy Sci. 2014;97(9):5566–5579. doi:10.3168/jds.2014-8293.
117.
Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front Nutr. 2019;6:48. doi:10.3389/fnut.2019.00048.
118.
Mikkelsen K, Stojanovska L, Prakash M, Apostolopoulos V. The effects of vitamin B on the immune/cytokine network and their involvement in depression. Maturitas. 2017;96:58–71. doi:10.1016/j.maturitas.2016.11.012.
119.
He W, Hu S, Du X, et al. Vitamin B5 Reduces Bacterial Growth via Regulating Innate Immunity and Adaptive Immunity in Mice Infected with Mycobacterium tuberculosis. Front Immunol. 2018;9:365. doi:10.3389/fimmu.2018.00365.
120.
Qian B, Shen S, Zhang J, Jing P. Effects of Vitamin B6 Deficiency on the Composition and Functional Potential of T Cell Populations. J Immunol Res. 2017;2017:1–12. doi:10.1155/2017/2197975.
121.
Ueland PM, McCann A, Midttun Ø, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspects Med. 2017;53:10–27. doi:10.1016/j.mam.2016.08.001.
122.
Hamer DH, Sempértegui F, Estrella B, et al. Micronutrient Deficiencies Are Associated with Impaired Immune Response and Higher Burden of Respiratory Infections in Elderly Ecuadorians. J Nutr. 2009;139(1):113–119. doi:10.3945/jn.108.095091.
123.
Keil SD, Bowen R, Marschner S. Inactivation of Middle East respiratory syndrome coronavirus (MERS-CoV) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment: RIBOFLAVIN AND LIGHT REDUCE MERS-CoV. Transfusion (Paris). 2016;56(12):2948–2952. doi:10.1111/trf.13860.
124.
Santacroce L, Charitos IA, Bottalico L. A successful history: probiotics and their potential as antimicrobials. Expert Rev Anti Infect Ther. 2019;17(8):635–645. doi:10.1080/14787210.2019.1645597.
125.
Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia, Lye HS, Balakrishnan K, et al. Beneficial Properties of Probiotics. Trop Life Sci Res. 2016;27(2):73–90. doi:10.21315/tlsr2016.27.2.6.
126.
Ballini A, Santacroce L, Cantore S, et al. Probiotics Efficacy on Oxidative Stress Values in Inflammatory Bowel Disease: A Randomized Double-Blinded Placebo-Controlled Pilot Study. Endocr Metab Immune Disord – Drug Targets. 2019;19(3):373–381. doi:10.2174/1871530319666181221150352.
127.
Azad MdAK, Sarker M, Wan D. Immunomodulatory Effects of Probiotics on Cytokine Profiles. BioMed Res Int. 2018;2018:1–10. doi:10.1155/2018/8063647.
128.
Zeng W, Shen J, Bo T, et al. Cutting Edge: Probiotics and Fecal Microbiota Transplantation in Immunomodulation. J Immunol Res. 2019;2019:1–17. doi:10.1155/2019/1603758.
129.
Olaimat AN, Aolymat I, Al-Holy M, et al. The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19. Npj Sci Food. 2020;4(1):17. doi:10.1038/s41538-020-00078-9.
130.
Kanauchi O, Andoh A, AbuBakar S, Yamamoto N. Probiotics and Paraprobiotics in Viral Infection: Clinical Application and Effects on the Innate and Acquired Immune Systems. Curr Pharm Des. 2018;24(6):710–717. doi:10.2174/1381612824666180116163411.
131.
Morais AHA, Passos TS, Maciel BLL, da Silva-Maia JK. Can Probiotics and Diet Promote Beneficial Immune Modulation and Purine Control in Coronavirus Infection? Nutrients. 2020;12(6):1737. doi:10.3390/nu12061737.
132.
Morais AH de A, Aquino J de S, da Silva-Maia JK, Vale SH de L, Maciel BLL, Passos TS. Nutritional status, diet and viral respiratory infections: perspectives for severe acute respiratory syndrome coronavirus 2. Br J Nutr. 2021;125(8):851–862. doi:10.1017/S0007114520003311.
133.
Baud D, Dimopoulou Agri V, Gibson GR, Reid G, Giannoni E. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Front Public Health. 2020;8:186. doi:10.3389/fpubh.2020.00186.
134.
Liu M, Zhu H, He Y, Zhu Y, Hu X, Zeng Y. Probiotics for treating novel coronavirus with diarrhea: A protocol for systematic review and meta analysis. Medicine (Baltimore). 2020;99(38):e21617. doi:10.1097/MD.0000000000021617.
135.
Angurana SK, Bansal A. Probiotics and Coronavirus disease 2019: think about the link. Br J Nutr. 2021;126(10):1564–1570. doi:10.1017/S000711452000361X.
136.
Guan W jie, Ni Z yi, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi:10.1056/NEJMoa2002032.
137.
Wang G, Wen J, Xu L, et al. Effect of enteral nutrition and ecoimmunonutrition on bacterial translocation and cytokine production in patients with severe acute pancreatitis. J Surg Res. 2013;183(2):592–597. doi:10.1016/j.jss.2012.12.010.
138.
Isacco CG, Ballini A, De Vito D, et al. Rebalancing the Oral Microbiota as an Efficient Tool in Endocrine, Metabolic and Immune Disorders. Endocr Metab Immune Disord – Drug Targets. 2021;21(5):777–784. doi:10.2174/1871530320666200729142504.
139.
Mahooti M, Miri SM, Abdolalipour E, Ghaemi A. The immunomodulatory effects of probiotics on respiratory viral infections: A hint for COVID-19 treatment? Microb Pathog. 2020;148:104452. doi:10.1016/j.micpath.2020.104452.
140.
Walton GE, Gibson GR, Hunter KA. Mechanisms linking the human gut microbiome to prophylactic and treatment strategies for COVID-19. Br J Nutr. 2021;126(2):219–227. doi:10.1017/S0007114520003980.
141.
World Health Organization Regional Office for the Eastern Mediterranean. Nutrition advice for adults during the COVID-19 outbreak. WHO EMRO,
http://www.emro.who.int/nutrit... (access: 2021.12.27).
142.
Associação Brasileira de Nutrição [Brazilian Association of Clinical Nutrition]. Guide to Healthy Eating in Times of COVID. ASBRAN
https://www.asbran.org.br/stor... (access: 2021.12.28).
143.
American Society for Nutrition. Making Health and Nutrition a Priority During the Coronavirus (COVID-19) Pandemic. ASN
https://nutrition.org/making-h... (access: 2021.12.28).
144.
Academia Española de Nutrición y Dietética. RECOMENDACIONES DE ALIMENTACIÓN Y NUTRICIÓN PARA LA POBLACIÓN ESPAÑOLA ANTE LA CRISIS SANITARIA DEL COVID-19. Academia Española de Nutrición y Dietética
http://www.academianutricionyd... (access: 2021.12.29).
146.
Jayawardena R, Misra A. Balanced diet is a major casualty in COVID-19. Diabetes Metab Syndr Clin Res Rev. 2020;14(5):1085–1086. doi:10.1016/j.dsx.2020.07.001.
147.
Gorji A, Khaleghi Ghadiri M. Potential roles of micronutrient deficiency and immune system dysfunction in the coronavirus disease 2019 (COVID-19) pandemic. Nutrition. 2021;82:111047. doi:10.1016/j.nut.2020.111047.
148.
Wądołowska L, Drywień M, Hamułka J, et al. Dietary recommendations during the Covid-19 pandemic. Statement of the Committee of Human Nutrition Science of the Polish Academy of Sciences. Rocz Państw Zakładu Hig. Published online 2021:209–220. doi:10.32394/rpzh.2021.0166.
149.
Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging. 2020;12(7):6049–6057. doi:10.18632/aging.103000.
152.
Maintaining a Healthy Diet during the COVID-19 Pandemic. FAO; 2020. doi:10.4060/ca8380en.
154.
Che Abdul Rahim N, Manjit Singh JS, Pardi M, Zainuddin AA, Salleh R. Analysis of Available Nutrition Recommendations to Combat COVID-19: A Scoping Review. Malays J Med Sci. 2021;28(3):18–45. doi:10.21315/mjms2021.28.3.3.
155.
El-Sharkawy AM, Sahota O, Lobo DN. Acute and chronic effects of hydration status on health. Nutr Rev. 2015;73(suppl 2):97–109. doi:10.1093/nutrit/nuv038.
157.
Infusino F, Marazzato M, Mancone M, et al. Diet Supplementation, Probiotics, and Nutraceuticals in SARS-CoV-2 Infection: A Scoping Review. Nutrients. 2020;12(6):1718. doi:10.3390/nu12061718.
158.
Stachowska E, Folwarski M, Jamioł-Milc D, Maciejewska D, Skonieczna-Żydecka K. Nutritional Support in Coronavirus 2019 Disease. Medicina (Mex). 2020;56(6):289. doi:10.3390/medicina56060289.