RESEARCH PAPER
Ambulatory blood pressure monitoring in children with primary and renal parenchymal hypertension
More details
Hide details
1
Katedra i Klinika Pediatrii i Nefrologii, Warszawski Uniwersytet Medyczny
Corresponding author
Piotr Skrzypczyk
Katedra i Klinika Pediatrii i Nefrologii,
Warszawski Uniwersytet Medyczny, ul. Marszałkowska 24, 00-576 Warszawa
Med Og Nauk Zdr. 2013;19(1):49-54
KEYWORDS
ABSTRACT
Introduction:
Introduction. Ambulatory blood pressure monitoring (ABPM) detects blood pressure disturbances more sensitively
compared to casual blood pressure (BP) measurements.
Assessment of differences in ABPM results in children with primary hypertension (PH) and renal parenchymal
hypertension (RH).
Material and Methods:
Study group consisted of 64 untreated children aged from 6.2 to 18.0 mean 14.2±3.3 years with PH (n=31) and RH (n=33) secondary to: nephropathy due to renal scarring (n=21), glomerulopathies (n=4), cystic kidney diseases (n=4), other (n=4). Following parameters were evaluated: age of recognition of AH, BMI Z-score, biochemical parameters,
GFR ac. to Schwartz [mL/min/1,73m2], ABPM: during 24h, activity (a) and resting (r) period mean systolic (SBP) and diastolic BP (DBP) [mm Hg], load (SBPL/24h, SBPL/a, SBPL/r, DBPL/24h, DBPL/a, DSBPL/r) [%], pulse pressure (PP/24h, PP/a, PP/r) [mm Hg], nocturnal BP dip (DIP SBP, DIP DBP) [%], variability (SD SBP, SD DBP), ambulatory arterial stiffness index (AASI).
Results:
Patients with PH were significantly older, had higher BMI Z-score, GFR (p<0.05), lower LDBP/r (p=0.05) and higher
PP/24h and PP/a (p<0.05) vs. patients with RH. In group with PH trend toward higher DIP SBP (p=0.08) and DIP DBP (p=0.06) values was found. No differences in SD SBP, SD DBP and AASI between the groups were found. In whole group of 64 children PP/24h, PP/a and PP/r correlated with age (r=0.40; r=0.41; r=0.33, p<0.01), BMI Z-score (r=0.30; r=0.28; r=0.35, p<0.05) and HDL
cholesterol (r=–0.40; r=–0.38; r=–0.44, p<0.05), AASI correlated with BMI Z-score (r=0.27, p<0.05), HDL cholesterol (r=–0.35, p<0.05), DIP SBP (r=–0.29, p<0.05) and DIP DBP (r=-0.45, p<0.0001).
Conclusions:
1) Children with arterial hypertension secondary to renal diseases may be characterized by high diastolic
blood pressure load during resting period and low nocturnal blood pressure dip. 2) In children with arterial hypertension
arterial stiffness is related to body mass index and lipid disturbances
REFERENCES (35)
1.
Sorof JM, Lai D, Turner J, Poffenbarger T, Portman RJ. Overweight, ethnicity, and the prevalence of hypertension in school-aged children. Pediatrics. 2004; 113(3): 475–482.
2.
McNiece KL, Poffenbarger TS, Turner JL, Franco KD, Sorof JM, Portman RJ. Prevalence of hypertension and pre-hypertension among adolescents. J Pediatr. 2007; 150 (6): 640–644.
3.
Wyszyńska T, Cichocka E, Wieteska-Klimczak A, Jobs K, Januszewicz P. A single pediatric center experience with 1025 children with hypertension. Acta Paediatr. 1992; 81(3): 244–246.
4.
Arar MY, Hogg RJ, Arant BS Jr, Seikaly MG. Etiology of sustained hypertension in children in the southwestern United States. Pediatr Nephrol. 1994; 8(2): 186–189.
5.
Schrader I, Person C, Pfertner U, Buhr-Schinner H, Schol G, Warneke G i wsp. Absence of nocturnal decrease in blood pressure in 24-hourblood pressure monitoring: an indication of secondary hypertension. Klin Wochenschr. 1989; 67(13): 659 665.
6.
Middeke M, Schrader J. Nocturnal blood pressure in normotensive subjects and those with white coat, primary, and secondary hypertension. BMJ 1994; 308(6929): 630–632.
7.
Seeman T, Palyzova D, Dusek J, Janda J. Reduced nocturnal blood pressure dip and sustained nighttime hypertension are specific markers of secondary hypertension. J Pediatr. 2005; 147(3): 366–371.
8.
Flynn JT. Differentiation between primary and secondary hypertension in children using ambulatory blood pressure monitoring. Pediatrics. 2002; 110(1): l89–193.
9.
Li Y, Wang JG, Dolan E, Gao PJ, Guo HF, Nawrot T i wsp. Ambulatory arterial stiffness index derived from 24-hour ambulatory blood pressure monitoring. Hypertension. 2006; 47(3): 359–364.
10.
Kawai T, Ohishi M, Kamide K, Nakama C, Onishi M, Ito N i wsp. Differences between daytime and nighttime blood pressure variability regarding systemic atherosclerotic change and renal function. Hypertens Res 2012 doi: 10.1038/hr.2012.162.
http://www.nature.com/hr/journ... vaop/ncurrent/full/hr2012162a.html (dostęp: 2013.01.09).
11.
National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents. Pediatrics. 2004; 114(suppl. 2): 555–576.
12.
Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA i wsp. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009; 20(3): 629–637.
13.
Urbina E, Alpert B, Flynn J, Hayman L, Harshfield GA, Jacobson M i wsp. Ambulatory blood pressure monitoring in children and adolescents: recommendations for standard assessment: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee of the council on cardiovascular disease in the young and the council for high blood pressure research. Hypertension. 2008; 52(3): 433–451.
14.
Wuhl E, Witte K, Sorgel M, Mehls O, Schaffer F; German Working Group on Pediatric Hypertension. Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens. 2002; 20(10): 1995–2007.
15.
Palczewska I, Niedźwiecka Z. Wskaźniki rozwoju somatycznego dzieci i młodzieży warszawskiej. Med Wieku Rozw. 2002; 2(supl.1).
16.
Poskitt E. Defining childhood obesity: the relative body mass index (BMI). Acta Paediatr 1995; 84(3): 961–962.
17.
K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002; 39(supl. 1): 1–266.
18.
White WB, Schulman P, McCabe EJ, Dey HM. Average daily blood pressure, not office pressure determines cardiac function in patients with hypertension. JAMA. 1989; 261(6): 837–877.
19.
Belsha CW, Wells TG, McNiece KL, Seib PM, Plummer JK, Berry PL. Influence of diurnal blood pressure variations on target organ abnormalities in adolescents with mild essential hypertension. Am J Hypertens. 1998; 11(4): 410–417.
20.
Lekakis JP, Zakopoulos NA, Protegorou AD, Papaioannou TG, KotsisVT, Pitiriga VCh i wsp. Arterial stiffness assessed by pulse wave analysis in essential hypertension: relation to 24-h blood pressure profile. Int J Cardiol. 2005; 102(3): 391–395.
21.
Morić VB, Delmis J, Sepec PM. Ambulatory blood pressure monitoring in children and adolescents—our results Acta Med Croatica. 2008; 62(supl 1): 3–6.
22.
Litwin M, Niemirska A, Śladowska J, Antoniewicz J, Daszkowska J, Wierzbicka A i wsp. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr Nephrol. 2006; 21(6): 811–819.
23.
Khan IA, Gajaria M, Stephens D, Balfe JW. Ambulatory blood pressure monitoring in children: a large center’s experience. Pediatr Nephrol. 2000; 14(8–9): 802–805.
24.
Peco-Antić A, Pejcić I, Stojanov V, Kostić M, Kruscić D, Jovanović O i wsp. Continuous ambulatory measurement of blood pressure in children – personal experience. Srp Arh Celok Lek. 1997; 125(7–8): 197–202.
25.
Converse RL, Jacobson TN, Toto RD, Jost CM, Cosentino F, Fouad- -Tarazi F i wsp. Sympathetic overactivity in patients with chronic renal failure. N Eng J Med. 1992; 327(27): 1912–1918.
26.
Rahman SN, Abraham WT, Van Putten VJ, Hasbargen JA, Schrier RW. Increased norepinephrine secretion in patients with the nephrotic syndrome and normal glomerular filtration rates: Evidence for primary sympathetic activation. Am J Nephrol. 1993; 13(4): 266–270.
27.
Fang J, Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971–1992. National Health and Nutrition Examination Survey. JAMA. 2000; 283(18): 2404–2410.
28.
Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S i wsp. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension. 2003; 41(6): 1183–1190.
29.
Bonilla Rosales IC, Parra Carrillo JZ, Romero Velarde E, Vizmanos Lamotte B, Garcia de Alba Garcia J. Blood pressure variability in 24 hours in obese and non-obese adolescents with breast development 4 and 5 of Tanner’s criteria. Nutr Hosp. 2011; 26(5): 1011–1017.
30.
Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Berent R i wsp. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004; 109(2): 184–189.
31.
Stergiou GS, Kollias A, Giovas PP, Papagiannis J, Roussias LG. Ambulatory arterial stiffness index, pulse pressure and pulse wave velocity in children and adolescents. Hypertens Res. 2010; 33(12): 1272–1777.
32.
Sulakova T, Janda J, Cerna J, Janštova V, Feber J. Assessment of arterial stiffness from ambulatory blood pressure monitoring in children with diabetes mellitus type-1 (DMT1). J Hum Hypertens. 2012; 26(6):. 357–364.
33.
Simonetti GD, VON Vigier RO, Wuhl, Mohaupt MG. Ambulatory arterial stiffness index is increased in hypertensive childhood disease. Pediatr Res. 2008; 64(3): 303–307.
34.
Schillaci G, Parati G, Pirro M, Pucci G, Mannarino MR, Sperandini L i wsp. Ambulatory arterial stiffness index is not a specific marker of reduced arterial compliance. Hypertension. 2007; 49(5): 986–991.
35.
White WB. Importance of aggressive blood pressure lowering when it may master most. Am J Cardiol. 2007; 100(3A): 10–16.